U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Diversion of Lignin Precursor Reduces Content and Improves Biomass Saccharification Efficiency
Published: January 13, 2015
Posted: April 01, 2015

Lignin confers recalcitrance to plant biomass used for producing biofuels and bioproducts. The metabolic steps for the synthesis of lignin building blocks belong to the shikimate and phenylpropanoid pathways. Genetic engineering efforts to reduce lignin content typically have employed gene knockout or gene silencing techniques to constitutively repress one of these metabolic pathways. Recently, researchers at the Department of Energy’s Joint BioEnergy Institute (JBEI) employed a new strategy using gain of function. In this method, expression of a 3-dehydroshikimate dehydratase (QsuB from Corynebacterium glutamicum) was targeted to the plastids of Arabidopsis to convert 3-dehydroshikimate—an intermediate of the shikimate pathway—into protocatechuate. This enzymatic conversion diverted lignin precursor into protocatechuate and related molecules and away from lignin precursors. Compared to wild-type plants, Arabidopsis lines expressing QsuB contained reduced levels of lignin deposition in the cell walls. Because this strategy is a gain of function, its expression can be controlled by selective promoters, thus offering better spatiotemporal control of lignin deposition than the gene knockout or gene silencing strategies. Finally, biomass from these engineered Arabidopsis lines exhibits more than a twofold improvement in saccharification efficiency. This result confirms that QsuB expression in plants, in combination with specific promoters, is a promising gain-of-function strategy for spatiotemporal reduction of lignin in plant biomass.

Reference: Eudes, A., N. Sathitsuksanoh, E. E. Baidoo, A. George, Y. Liang, F. Yang, S. Singh, J. D. Keasling, B. A. Simmons, and D. Loqué. 2015. “Expression of a Bacterial 3-Dehydroshikimate Dehydratase Reduces Lignin Content and Improves Biomass Saccharification Efficiency,” Plant Biotechnology Journal, DOI: 10.1111/pbi.12310. (Reference link)

Contact: Kent Peters, SC-23.2, (301) 903-5549
Topic Areas:

  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Microbes and Communities
  • Research Area: Plant Systems and Feedstocks, Plant-Microbe Interactions
  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: DOE Bioenergy Research Centers (BRC)
  • Research Area: Biosystems Design

Division: SC-23.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)