U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


U.S. Electrical Generation Water Demands: Modeling Scenarios for the Water-Energy Nexus
Published: December 12, 2014
Posted: March 24, 2015

Generating electrical power is water-intensive because of water’s central role in thermoelectric cooling. Approximately 41% of the total U.S. freshwater supply is used by the electricity sector. A team led by scientists at Pacific Northwest National Laboratory used a multiscale version of the Global Change Assessment Model (GCAM) to evaluate interdependencies between electricity and water systems at the state level within the United States. Incorporating details at finer scales, GCAM-USA was used to simulate future electricity generation and associated water withdrawals and consumption using various scenarios. The team found: 1) lower withdrawals and higher consumption resulting from the conversion to closed-loop (from open-loop) cooling systems, 2) different energy-sector water demand behaviors with alternative pathways to the mitigation goal, 3) open trading of electricity benefiting energy-scarce yet demand-intensive states, 4) state homogeneity under certain driving forces (e.g., climate mitigation and water-saving technologies) but mixed effects under other drivers (e.g., electricity trade), and 5) a clear trade-off between water consumption and withdrawal for the U.S. electricity sector. With respect to electricity sector climate mitigation strategies, the team also noted that efforts centered on renewable energy and water-saving technologies exhibited a smaller water-demand footprint than those focused around nuclear power and carbon capture and sequestration. The study advances existing research by incorporating new technological and geographical details while exploring technological transitions. This research was funded by the Department of Energy’s Integrated Assessment Research Program.

Reference: Liu, L., M. Hejazi, P. Patel, P. Kyle, E. Davies, Y. Zhou, L. Clarke, and J. Edmonds. 2014. “Water Demands for Electricity Generation in the U.S.: Modeling Different Scenarios for the Water–Energy Nexus,” Technological Forecasting and Social Change, DOI: 10.1016/j.techfore.2014.11.004. (Reference link)

Contact: Bob Vallario, SC 23.1, (301) 903-5758
Topic Areas:

  • Research Area: Multisector Dynamics (formerly Integrated Assessment)

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)