BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Elucidating Control of Secondary Cell Wall Synthesis
Published: December 24, 2014
Posted: March 12, 2015

The plant cell wall plays an important role in cell function and environmental response by providing both mechanical support and a barrier against invading pathogens. Furthermore, the highly-abundant secondary cell walls, which are composed of cellulose, hemicelluloses and lignin, are an important source of dietary fiber, raw material for paper and pulp, and feedstock for biofuel production. Despite the importance of the plant secondary cell wall for renewable resources, knowledge of the precise mechanisms that regulate these critical functions is limited. New research results published in the journal Nature report the identification of a gene network in the model plant Arabidopsis thaliana that controls synthesis of the biopolymers that comprise the secondary cell wall. Instead of using a gene-by-gene approach, the scientists undertook a comprehensive, large-scale analysis, which revealed a highly integrated network involving hundreds of genes and protein-DNA interactions. Furthermore, they found that the extremely large number of combinatorial possibilities provided by this arrangement allows for subtle adaptation to specific abiotic stresses such as salt stress and iron deprivation. These findings provide a framework for future work to dissect and refine specific gene functions, enabling targeted manipulation of the network to produce high-yielding plant feedstocks for bioenergy production. The Nature paper is accompanied by a commentary by two prominent plant scientists. This research was supported by the U.S. Department of Agriculture-Department of Energy Plant Feedstocks Genomics for Bioenergy program.

References: Taylor-Teeples, M., L. Lin, M. de Lucas, G. Turco, T. W. Toal, A. Gaudinier, N. F. Young, G. M. Trabucco, M. T. Veling, R. Lamothe, P. P. Handakumbura, G. Xiong , C. Wang, J. Corwin, A. Tsoukalas, L. Zhang, D. Ware, M. Pauly, D. J. Kliebenstein, K. Dehesh, I. Tagkopoulos, G. Breton, J. L. Pruneda-Paz, S. E. Ahnert, S. A. Kay, S. P. Hazen, and M. Brady.   2014. “An Arabidopsis Gene Regulatory Network for Secondary Cell Wall Synthesis,” Nature 517, 571–75. DOI: 10.1038/nature14099.   (Reference link)

Bishopp, A., and M. J. Bennett. 2015. “Seeing the Wood and the Trees,” Nature 517, 558–59. DOI:10.1038/nature14085. (Reference link)

Contact: Cathy Ronning, SC-23.2, (301) 903-9549
Topic Areas:

  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Plant Systems and Feedstocks, Plant-Microbe Interactions
  • Research Area: Sustainable Biofuels and Bioproducts

Division: SC-33.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)