BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Use of Co-Solvent Saves on Cost and Enzymes
Published: February 11, 2015
Posted: March 12, 2015

Production of cost-effective biofuels from lignocellulosic biomass must overcome lignocellulose recalcitrance. Current processes to release sugars for viable biochemical conversion to biofuels requires energy-intensive pretreatment and large amounts of expensive enzymes. Researchers from the Department of Energy’s BioEnergy Science Center (BESC) have discovered that a new pretreatment called co-solvent-enhanced lignocellulosic fractionation (CELF) reduces enzyme costs dramatically, resulting in high sugar yields from hemicellulose and cellulose. CELF employs tetrahydrofuran (THF), which is miscible with aqueous dilute acid, and gives up to 95% of the theoretical yield of glucose, xylose, and arabinose from corn stover even when coupled with enzymatic hydrolysis at only 2 mg enzyme/g glucan—an unusually low concentration of enzymes. The unusually high saccharification with such low enzyme loadings can be attributed to very high lignin removal, which was evidenced by compositional analysis, fractal kinetic modeling, and scanning electron microscopy imaging. Subsequently, nearly pure lignin product was precipitated giving a clean lignin stream for valorization. THF was efficiently recovered and recycled by evaporation of the volatile solvent. Simultaneous saccharification of CELF-pretreated solids with low enzyme loadings and fermentation by Saccharomyces cerevisiae produced twice as much ethanol as that from dilute acid-pretreated solids after being optimized for corn stover. Thus, CELF offers efficient lignocellulosic biomass pretreatment and saccharification with reduced costs relative to current processes.

Reference: Nguyen, T. Y., C. M. Cai, R. Kumar, and C. E. Wyman. 2015 “Co-Solvent Pretreatment Reduces Costly Enzyme Requirements for High Sugar and Ethanol Yields from Lignocellulosic Biomass,” ChemSusChem, DOI: 10.1002/cssc.201403045. (Reference link)

Contact: Kent Peters, SC-23.2, (301) 903-5549
Topic Areas:

  • Research Area: Microbes and Communities
  • Research Area: Plant Systems and Feedstocks, Plant-Microbe Interactions
  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: DOE Bioenergy Research Centers (BRC)

Division: SC-33.2 Biological Systems Science Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)