U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Elevated CO2 Suppresses Dominant Plant Species in a Mixed-Grass Prairie
Published: October 13, 2014
Posted: January 22, 2015

Climate controls vegetation distribution across the globe, with some vegetation types being more vulnerable to climate change and others more resistant. Because resistance and resilience can influence ecosystem stability and determine how communities and ecosystems respond to climate change, it is important to evaluate the potential for resistance in future ecosystem function. In a mixed-grass prairie in the northern Great Plains, researchers utilized a large field experiment to test the effects of elevated CO2, warming, and summer irrigation on plant community structure and productivity. This study sought to understand changes to both stability in plant community composition and biomass production. The researchers found that the independent effects of CO2 and warming on community composition and productivity depend on interannual variation in precipitation and that the effects of elevated CO2 are not limited to water saving because they differ from those of irrigation. They also show that production in this mixed-grass prairie ecosystem is not only relatively resistant to interannual variation in precipitation, but also rendered more stable under elevated CO2 conditions. This increase in production stability is the result of altered community dominance patterns: Community evenness increases as dominant species decrease in biomass under elevated CO2. In many grasslands that serve as rangelands, the economic value of the ecosystem is largely dependent on plant community composition and the relative abundance of key forage species. These results have implications for how native grasslands are managed in the face of changing climate.

Reference: Zelikova, T. J., D. M. Blumenthal, D. G. Williams, L. Souza, D. R. LeCain, J. Morgan, and E. Pendall. 2014. “Long-Term Exposure to Elevated CO2 Enhances Plant Community Stability by Suppressing Dominant Plant Species in a Mixed-Grass Prairie,” Proceedings of the National Academy of Sciences (USA) 111(43), 15,456-461. DOI: 10.1073/pnas.1414659111. (Reference link)

Contact: Mike Kuperberg, SC-23.1, (301) 903-3281, Daniel Stover, SC-23.1, (301) 903-0289
Topic Areas:

  • Research Area: Terrestrial Ecosystem Science
  • Research Area: Carbon Cycle, Nutrient Cycling

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)