U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Contemporary Terrestrial Biosphere May Be More CO2 Limited than Previously Thought
Published: October 13, 2014
Posted: January 22, 2015

In plants with C3 photosynthetic pathways, CO2 concentrations drop considerably along leaf mesophyll diffusion pathways from sub-stomatal cavities to chloroplasts where CO2 assimilation occurs. Global carbon cycle models have not explicitly represented this internal drawdown, overestimating CO2 available for carboxylation and underestimating photosynthetic responsiveness to atmospheric CO2. Researchers at Oak Ridge National Laboratory sought to determine how mesophyll diffusion affects the global land CO2 fertilization effect estimated by global carbon models. The team found that current carbon cycle models underestimate by 16% the long-term responsiveness of global terrestrial productivity to CO2 fertilization. This underestimation of CO2 fertilization is caused by an inherent model structural deficiency related to a lack of explicit representation of CO2 diffusion inside leaves, which results in an overestimation of CO2 available at the carboxylation site. The magnitude of CO2 fertilization underestimation matches the long-term positive growth bias in the historical atmospheric CO2 predicted by Earth system models. This finding implies that the contemporary terrestrial biosphere is more CO2 limited than previously thought and will lead to improved understanding and modeling of carbon-climate feedbacks.

Reference: Sun, Y., L. Gu, R. E. Dickinson, R. J. Norby, S. G. Pallardy, and F. M. Hoffman. 2014. “Impact of Mesophyll Diffusion on Estimated Global Land CO2 Fertilization,” Proceedings of the National Academy of Sciences (USA) 111(44), 15,774-779. DOI: 10.1073/pnas.1418075111. (Reference link)

Contact: Daniel Stover, SC-23.1, (301) 903-0289, Mike Kuperberg, SC-23.1, (301) 903-3281
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Terrestrial Ecosystem Science
  • Research Area: Carbon Cycle, Nutrient Cycling

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)