U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Contemporary Terrestrial Biosphere May Be More CO2 Limited than Previously Thought
Published: October 13, 2014
Posted: January 22, 2015

In plants with C3 photosynthetic pathways, CO2 concentrations drop considerably along leaf mesophyll diffusion pathways from sub-stomatal cavities to chloroplasts where CO2 assimilation occurs. Global carbon cycle models have not explicitly represented this internal drawdown, overestimating CO2 available for carboxylation and underestimating photosynthetic responsiveness to atmospheric CO2. Researchers at Oak Ridge National Laboratory sought to determine how mesophyll diffusion affects the global land CO2 fertilization effect estimated by global carbon models. The team found that current carbon cycle models underestimate by 16% the long-term responsiveness of global terrestrial productivity to CO2 fertilization. This underestimation of CO2 fertilization is caused by an inherent model structural deficiency related to a lack of explicit representation of CO2 diffusion inside leaves, which results in an overestimation of CO2 available at the carboxylation site. The magnitude of CO2 fertilization underestimation matches the long-term positive growth bias in the historical atmospheric CO2 predicted by Earth system models. This finding implies that the contemporary terrestrial biosphere is more CO2 limited than previously thought and will lead to improved understanding and modeling of carbon-climate feedbacks.

Reference: Sun, Y., L. Gu, R. E. Dickinson, R. J. Norby, S. G. Pallardy, and F. M. Hoffman. 2014. “Impact of Mesophyll Diffusion on Estimated Global Land CO2 Fertilization,” Proceedings of the National Academy of Sciences (USA) 111(44), 15,774-779. DOI: 10.1073/pnas.1418075111. (Reference link)

Contact: Daniel Stover, SC-23.1, (301) 903-0289, Mike Kuperberg, SC-23.1, (301) 903-3281
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Terrestrial Ecosystem Science
  • Research Area: Carbon Cycle, Nutrient Cycling

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)