U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Improved Lignin Depolymerization for Higher-Value Products
Published: November 02, 2014
Posted: January 12, 2015

Lignin is a heterogeneous aromatic biopolymer that accounts for nearly 30% of the organic carbon on Earth and is one of the few renewable sources of aromatic chemicals. As the most recalcitrant of the three components of lignocellulosic biomass (cellulose, hemicellulose, and lignin), lignin has been treated as a waste product in the pulp and bioenergy industries, where it is sometimes burned to provide energy. Creation of higher-value bioproducts from lignin will increase the economic viability of integrated biorefineries. Depolymerization is an important starting point for many lignin valorization strategies, because it can generate valuable aromatic chemicals and provide a source of low-molecular-mass feedstocks suitable for downstream processing. Commercial precedents show that certain types of lignin (lignosulphonates) may be converted into vanillin and other marketable products, but new technologies are needed to enhance the lignin value chain. Lignin’s complex, irregular structure complicates chemical conversion efforts, and known depolymerization methods typically afford ill-defined products in low yields (that is, less than 10-20 wt%). Researchers of the Department of Energy’s Great Lakes Bioenergy Research Center describe a method for the depolymerization of oxidized lignin under mild conditions in aqueous formic acid that results in more than 60 wt% yield of low molecular-mass aromatics. This facile C-O cleavage method was used to depolymerize aspen lignin, providing mechanistic insights into the reaction. Efficient lignin depolymerization and biomass refining have the potential to contribute to the commercial and economic viability of lignocellulosic biofuels.

Reference: Rahimi, A., A. Ulbrich, J. J. Coon, and S. S. Stahl. 2014. “Formic-Acid-Induced Depolymerization of Oxidized Lignin to Aromatics,” Nature 515, 249-52. DOI: 10.1038/nature13867. (Reference link)

Contact: Kent Peters, SC-23.2, (301) 903-5549
Topic Areas:

  • Research Area: Plant Systems and Feedstocks, Plant-Microbe Interactions
  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: DOE Bioenergy Research Centers (BRC)

Division: SC-23.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)