U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Analyzing the Sensitivity of Cloud Properties to Parameters for Differing Cloud Types
Published: August 13, 2014
Posted: October 03, 2014

Large uncertainties remain in simulating clouds in global climate models, partly due to multiple tunable parameters in cloud parameterizations. A multi-institutional team supported by the Department of Energy investigated the sensitivity of simulated shallow cumulus and stratocumulus clouds to different parameterizations. The investigation selected tunable parameters in a newly implemented cloud scheme in the single-column version of the Community Atmosphere Model version 5 (SCAM5), called Cloud Layers Unified by Binormals (CLUBB). The team found that most of the variance in simulated cloud fields can be explained by a small number of tunable parameters. They used a sophisticated statistical approach to explore the high-dimensional parameter space in CLUBB and analyzed the responses of simulated cloud fields to tunable parameters. They found that among 40 to 50 tunable parameters in CLUBB, only a handful are influential. The influential parameters are different for different types of clouds. Parameters related to water flux are found to be the most influential for stratocumulus. For shallow cumulus, the most influential parameters are those related to skewness of vertical velocity, reflecting the strong coupling between cloud properties and dynamics in this regime. The influential parameters in stratocumulus clouds are sensitive to the vertical resolution while little sensitivity is found for the shallow cumulus clouds. This study improves the understanding of the parameter dependence of this newly implemented scheme and reduces the number of tunable parameters for ongoing sensitivity and calibration study of global simulations.

Reference: Guo, Z., M. Wang, Y. Qian, V. Larson, P. Bogenschutz, G. Lin, S. Ghan, M. Ovchinnikov, C. Zhao, and T. Zhou. 2014. “A Sensitivity Analysis of Cloud Properties to CLUBB Parameters in the Single Column Community Atmosphere Model (SCAM5),” Journal of Advances in Modeling Earth Systems, DOI:10.1002/2014MS000315. (Reference link)

Contact: Dorothy Koch, SC-23.1, (301) 903-0105
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Atmospheric System Research

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)