U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Initializing Ice Sheet Models in Earth System Models
Published: September 22, 2014
Posted: October 03, 2014

Studies of ice-sheet interactions with the climate system are needed to project sea level changes. For such studies, models of ice sheets must be integrated into a coupled climate model system. A challenge is to determine the “initial conditions,” or what values of ice flow and other conditions to give the system when the model starts. Department of Energy scientists at Los Alamos National Laboratory recently addressed complications in the coupling of a dynamic ice sheet model (ISM) and an Earth System Model (ESM). Such complications arise because of the unknown ISM initial conditions. Unless explicitly accounted for during ISM initialization, the ice sheet is far from equilibrium with the surface conditions from the ESM. When coupled to the ESM conditions, the result is a shock and unphysical and undesirable transitions in ice geometry and state. To solve the problem, the team assumed equilibrium between the ice and the climate system, and the researchers derived an approach for finding ISM initial conditions. The approach involves a statistical optimization of the solution of slippage and topography on the bedrock, given what is observed and is physically reasonable. The method was first applied to a synthetic test problem, and then to a simulation of the Greenland ice sheet. The results show that, in the presence of uncertainties in the basal topography, ice thickness also should be treated as an optimization variable. While the focus here is on the coupling between an ISM and ESM surface, the method could be extended to include optimal coupling to an ocean model as well.

Reference: Perego, M., S. F. Price, and G. Stadler. 2014. “Optimal Initial Conditions for Coupling Ice Sheet Models to Earth System Models,” Journal of Geophysical Research: Earth Surface, DOI:10.1002/2014JF003181. (Reference link)

Contact: Dorothy Koch, SC-23.1, (301) 903-0105
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)