BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Evolution of Potential Energy Grass Genome Structure
Published: June 01, 2014
Posted: October 03, 2014

The Saccharinae group of grasses contains two members that are potentially important sources of sugar and lignocellulosic biomass for bioenergy, due at least in part to highly efficient C4 photosynthesis. These grasses are the warm temperate-tropical sugarcane (Saccharum officinarum) and Miscanthus spp., which can yield high levels of biomass at temperate latitudes. A close relative is sorghum (Sorghum bicolor), also grown as a bioenergy feedstock in addition to its use as food and feed. In contrast to sorghum, the Saccharinae grasses are known for polyploidy and possess high chromosome numbers, offering an opportunity to investigate the evolutionary processes of genome duplication, genome structure, and the implications for crop improvement strategies. Researchers funded by the joint U.S. Department of Agriculture-Department of Energy Plant Feedstock Genomics for Bioenergy program have applied genome sequencing and global comparative analyses of Miscanthus, Saccharum, and sorghum to gain insight into the different evolutionary fates of Miscanthus and Saccharum after they diverged from sorghum. The researchers report evidence for the existence of a genome duplication shared between Saccharum and Miscanthus as well as an additional Saccharum-specific duplication event. Understanding the genome structure of these two complex grasses in relation to the closely related and fully sequenced sorghum genome will facilitate breeding efforts to improve bioenergy-relevant traits such as biomass yield and adaptation to changing environments.

Reference: Kim, C., X. Wang, T.-H. Lee, K. Jakob, G.-J. Lee, and A. H. Paterson. 2014. “Comparative Analysis of Miscanthus and Saccharum Reveals a Shared Whole-Genome Duplication but Different Evolutionary Fates,” Plant Cell 26, 2420-29. DOI:10.1105/tpc.114.125583. (Reference link)

Contact: Cathy Ronning, SC-23.2, (301) 903-9549
Topic Areas:

  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Plant Systems and Feedstocks, Plant-Microbe Interactions
  • Research Area: Sustainable Biofuels and Bioproducts

Division: SC-33.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)