U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Revealing Pathways that Drive Metabolism in Sulfate-Reducing Bacteria
Published: November 15, 2013
Posted: September 22, 2014

Sulfate-reducing bacteria (SRB), commonly found in oxygen-deprived habitats, are known for their involvement in the corrosion of metals and the formation of toxic sulfide; however, they also are involved in controlling the transformations and transport of a number of toxic metal contaminants in soils and groundwater. Effective use of SRBs to control metal contaminants requires a better understanding of their bioenergetic pathways for sulfate reduction. A team of scientists from the University of Missouri, Oak Ridge National Laboratory, and Environmental Molecular Sciences Laboratory (EMSL) used a mutant form of an SRB, Desulfovibrio alaskensis, to test the hypothesis that the sulfate reduction that occurs in the cell’s interior cytoplasm relies on a flow of electrons from the cell’s periplasm, found between the cell’s two exterior membranes. The researchers characterized bacterial growth and examined gene expression using proteomic and transcriptomic analyses at EMSL. Their results indicate that a protein that spans the inner membrane from the periplasm to the cytoplasm and another protein found only in the periplasm are essential for transferring electrons from the periplasm to the cytoplasm to drive sulfate reduction. These research results also are consistent with another recently discovered biochemical pathway involving hydrogen cycling that increases the efficiency of energy use in many SRBs. Together, these findings could be important in designing pathways for biofuels production.

Reference: Keller, K. L., B. J. Rapp-Giles, E. S. Semkiw, I. Porat, S. D. Brown, and J. D. Wall. 2014. “A New Model for Electron Flow for Sulfate Reduction in Desulfovibrio alaskensis G20,” Applied and Environmental Microbiology 80(3), 855-68. DOI:10.1128/AEM.02963-13. (Reference link)

Contact: Paul E. Bayer, SC-23.1, (301) 903-5324
Topic Areas:

  • Research Area: Subsurface Biogeochemical Research
  • Research Area: DOE Environmental Molecular Sciences Laboratory (EMSL)
  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Microbes and Communities
  • Research Area: Sustainable Biofuels and Bioproducts

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)