BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Revealing Pathways that Drive Metabolism in Sulfate-Reducing Bacteria
Published: November 15, 2013
Posted: September 22, 2014

Sulfate-reducing bacteria (SRB), commonly found in oxygen-deprived habitats, are known for their involvement in the corrosion of metals and the formation of toxic sulfide; however, they also are involved in controlling the transformations and transport of a number of toxic metal contaminants in soils and groundwater. Effective use of SRBs to control metal contaminants requires a better understanding of their bioenergetic pathways for sulfate reduction. A team of scientists from the University of Missouri, Oak Ridge National Laboratory, and Environmental Molecular Sciences Laboratory (EMSL) used a mutant form of an SRB, Desulfovibrio alaskensis, to test the hypothesis that the sulfate reduction that occurs in the cell’s interior cytoplasm relies on a flow of electrons from the cell’s periplasm, found between the cell’s two exterior membranes. The researchers characterized bacterial growth and examined gene expression using proteomic and transcriptomic analyses at EMSL. Their results indicate that a protein that spans the inner membrane from the periplasm to the cytoplasm and another protein found only in the periplasm are essential for transferring electrons from the periplasm to the cytoplasm to drive sulfate reduction. These research results also are consistent with another recently discovered biochemical pathway involving hydrogen cycling that increases the efficiency of energy use in many SRBs. Together, these findings could be important in designing pathways for biofuels production.

Reference: Keller, K. L., B. J. Rapp-Giles, E. S. Semkiw, I. Porat, S. D. Brown, and J. D. Wall. 2014. “A New Model for Electron Flow for Sulfate Reduction in Desulfovibrio alaskensis G20,” Applied and Environmental Microbiology 80(3), 855-68. DOI:10.1128/AEM.02963-13. (Reference link)

Contact: Paul E. Bayer, SC-23.1, (301) 903-5324
Topic Areas:

  • Research Area: Subsurface Biogeochemical Research
  • Research Area: DOE Environmental Molecular Sciences Laboratory (EMSL)
  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Microbes and Communities
  • Research Area: Sustainable Biofuels and Bioproducts

Division: SC-33.1 Earth and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)