U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Watershed-Scale Fungal Communities in a Co-Contaminated System
Published: January 03, 2014
Posted: September 22, 2014

The legacy of the Department of Energy’s former weapons production activities includes comingled plumes of uranium and very high levels of nitrate in groundwater and soils. At contaminated sites with high nitrate concentrations, anaerobic microbes are known to reduce the nitrate through metabolic respiration. In contrast, the role and importance of fungi, which are abundant in groundwater and soils and are also metal resistant and involved in biogeochemical cycling of carbon, nutrients and metals, is not well understood. To address this gap in understanding, a team of scientists from the Georgia Institute of Technology, Florida State University, and Oak Ridge National Laboratory used quantitative and semi-quantitative molecular techniques to characterize the abundance, distribution, and diversity of fungi in a nitrate and uranium contaminated watershed. The team found that members of the Ascomycota phylum dominated the watershed, and that the community composition varied as a function of the pH gradient. In addition, they discovered that one fungal species is able to reduce nitrate to nitrous oxide, a potent greenhouse gas.

Reference: Jasrotia, P., S. J. Green, A. Ganion, W. A. Overholt, O. Prakash, D. Wafula, D. Hubbard, D. B. Watson, C. W. Schadt, S. C. Brooks, and J. E. Kostka. 2014. “Watershed-Scale Fungal Community Characterization Along a pH Gradient in a Subsurface Environment Cocontaminated with Uranium and Nitrate,” Applied and Environmental Microbiology 80(6), 1810-20. DOI:10.1128/AEM.03423-13. (Reference link)

Contact: Paul E. Bayer, SC-23.1, (301) 903-5324
Topic Areas:

  • Research Area: Subsurface Biogeochemical Research
  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Microbes and Communities

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)