BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Theory Behind Tropical Relative Humidity
Published: July 17, 2014
Posted: September 22, 2014

Water vapor, water that has evaporated into the atmosphere, is a natural amplifier of climate change. When the climate warms (e.g., from increasing carbon dioxide [CO2]), the warmer air “holds” more water vapor, so the water vapor concentration increases. Water vapor itself is a powerful greenhouse gas, so an increase in water vapor leads to more warming, which allows the air to hold more water vapor, and so on. Therefore, water vapor amplifies CO2’s warming effect. The assumption, which was also predicted by models, was that the relative humidity (RH), or amount of water vapor in the air divided by the amount the atmosphere can hold at a given temperature, does not change with temperature. Until now, however, no clear reasoning for this basic assumption had been provided. A recent study by a Department of Energy-funded researcher at Lawrence Berkeley National Laboratory has developed a theoretical explanation for explaining this assumption, as well as how relative humidity should vary with height in the tropical atmosphere. Given a few inputs, including the pressure, temperature, and amount of air that convective plumes take in as they rise (i.e., the entrainment) and release at the top of the plume (i.e., the detrainment), a set of equations was derived that predicts the RH as well as the change of temperature with height. The theory was used to show that the magnitude of RH is maximum at the surface, decreases with height to a minimum in the lower troposphere, then increases to a high value in the upper troposphere. The theory also confirms the assumption that RH does not vary with temperature as the atmosphere warms. This new study provides an important theoretical foundation for understanding how the atmosphere responds to temperature change.

Reference: Romps, D. M. 2014. “An Analytical Model for Tropical Relative Humidity,” Journal of Climate, DOI:10.1175/JCLI-D-14-00255.1. (Reference link)

Contact: Dorothy Koch, SC-23.1, (301) 903-0105
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling

Division: SC-33.1 Earth and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)