BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Understanding Ice Loss in Earth’s Coldest Regions: Melting Under the Antarctic Ice Sheet’s Skin
Published: April 01, 2014
Posted: September 22, 2014

A puzzle for Antarctic ice sheet change has been to understand how ice melts in places where surface conditions are too cold for ice to melt. A team of scientists, including a Department of Energy-supported researcher at Los Alamos National Laboratory, has studied this problem using ice models. Their field location is the McMurdo Dry Valley glaciers of Antarctica, where summer temperatures never rise far above the melting threshold. Active melting is rarely observed, yet runoff from these glaciers is the primary source of water to streams, lakes and associated ecosystems in the valleys, which are among the coldest and driest ecosystems on Earth. The processes generating melt under these marginal conditions are not well understood, and traditional melt modeling techniques are inadequate to explain the observed runoff from these glaciers.

The team investigated two processes: 1) penetration of solar radiation into the ice, and 2) drainage of subsurface melt from the ice, as well as their roles in generating runoff from Dry Valley glaciers. The researchers successively added these processes to an energy balance model and applied the model to three glacier sites using 13 years of hourly meteorological data. Model results show that inclusion of both processes is necessary to accurately model ice loss, ice density, and ice temperature on these glaciers. Melt on the glacier surface is rare, but internal melting 5-15 cm below the ice surface is extensive, and its drainage accounts for ~50% of all summer ice loss. This finding is consistent with field observations of subsurface streams and formation of a weathering crust. The team identified an annual cycle of weathering crust formation in summer and its removal during the 10 months of winter sublimation. Due to the complexities of ice melt at air temperatures close to the melting temperature, these glaciers will respond differently to changes in climate than glaciers in warmer climates. This behavior also will apply to other glaciers at very high latitudes and elevations and many extraterrestrial glaciers such as those on Mars.

Reference: Hoffman, M. J., A. G. Fountain, and G. E. Liston. 2014. “Near-Surface Internal Melting: A Substantial Mass Loss on Antarctic Dry Valley Glaciers,” Journal of Glaciology 60(220), 361-74. DOI:10.3189/2014JoG13J095. (Reference link)

Contact: Dorothy Koch, SC-23.1, (301) 903-0105
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling

Division: SC-33.1 Earth and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Jan 11, 2022
No Honor Among Copper Thieves
Findings provide a novel means to manipulate methanotrophs for a variety of environmental and in [more...]

Dec 06, 2021
New Genome Editing Tools Can Edit Within Microbial Communities
Two new technologies allow scientists to edit specific species and genes within complex laborato [more...]

Oct 27, 2021
Fungal Recyclers: Fungi Reuse Fire-Altered Organic Matter
Degrading pyrogenic (fire-affected) organic matter is an important ecosystem function of fungi i [more...]

Oct 19, 2021
Microbes Offer a Glimpse into the Future of Climate Change
Scientists identify key features in microbes that predict how warming affects carbon dioxide emi [more...]

Aug 25, 2021
Assessing the Production Cost and Carbon Footprint of a Promising Aviation Biofuel
Biomass-derived DMCO has the potential to serve as a low-carbon, high-performance jet fuel blend [more...]

List all highlights (possible long download time)