U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Modeling Ice Sheet Transition from Bedrock to Floating Shelf
Published: July 18, 2014
Posted: September 22, 2014

Destabilization of the West Antarctic Ice Sheet could lead to significant sea level rise. The most likely shifts would occur where the ice sheet hangs out over the ocean, because once the ice sheet loosens and calves, the ice behind it could follow. Furthermore, ice on the bedrock often lies below sea level, and it drains most of its grounded ice to the ocean via ice streams. When the streams connect to the ocean water, rapid ice flow is possible. Capturing these processes accurately in a climate model generally requires very high model resolution. In a recent Department of Energy-funded study, a one-dimensional formulation (or parameterization) was developed to approximate the degree of connectivity between the ice flows and the ocean. The study showed that strong ocean connectivity not only speeds up ice flow near the grounding line, but also decreases the model error and need for high resolution near the grounding line. With strong connectivity, the study demonstrated that a grid resolution of about 1 km is sufficient to accurately model grounding-line migration. Without this connectivity using the new formulation, fixed-grid models typically would need a resolution of 200 m or less, implying much greater computational cost. If these results extend to three-dimensional models, the impact could be significant. Adding a physically plausible parameterization of ocean connectivity to these models could give comparable accuracy at greatly reduced computational cost.

Reference: Leguy, G. R., X. S. Asay-Davis, and W. H. Lipscomb. 2014. “Parameterization of Basal Friction Near Grounding Lines in a One-Dimensional Ice Sheet Model,” The Cryosphere 8, 1239-59. DOI:10.5194/tc-8-1239-2014, 2014. (Reference link)

Contact: Dorothy Koch, SC-23.1, (301) 903-0105
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)