BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Characterization of Poplar Budbreak Gene Enhances Understanding of Spring Regrowth
Published: June 20, 2014
Posted: September 22, 2014

Trees in temperate climates undergo annual cycles of growth and dormancy corresponding to summer and winter seasons, a critical strategy that allows perennial plants to survive cold and dehydration during the winter months. These important transitions are controlled by photoperiod and temperature, but the exact mechanisms by which key physiological processes are initiated are still poorly understood. Researchers at Michigan Technological University and Oregon State University have identified and functionally characterized a gene in the bioenergy feedstock tree Populus called Early Bud-Break 1 (EBB1). EBB1 serves as a “master regulator” in the timing of spring growth reactivation, or budbreak. In addition, the protein encoded by EBB1 was found to function in many other processes critical to poplar survival, including nutrient cycling and root growth. These results enhance understanding of dormancy release in woody perennial plants and will enable new approaches for breeding trees better adapted to changing environments such as a warmer climate. The research was supported by the U.S. Department of Agriculture-Department of Energy Plant Feedstock Genomics for Bioenergy Program. (Reference link)

Reference: Yordanov, Y. S., C. Ma, S. H. Strauss, and V. G. Busov. 2014. “Early Bud-Break 1 (EBB1) is a Regulator of Release from Seasonal Dormancy in Poplar Trees,” Proceedings of the National Academy of Sciences (USA) 111(27), 10,001-10,006. DOI: 10.1073/pnas.1405621111. (Reference link)

Contact: Cathy Ronning, SC-23.2, (301) 903-9549
Topic Areas:

  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Plant Systems and Feedstocks, Plant-Microbe Interactions
  • Research Area: Sustainable Biofuels and Bioproducts

Division: SC-33.2 Biological Systems Science Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)