U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Poplar Tree Root Response to Symbiotic Fungus Determines Success of Fungal Colonization
Published: June 01, 2014
Posted: August 11, 2014

Microbial communities sharing the soil environment with plant roots can have a pro­found influence on the overall health and vitality of the plant. One well-known example of a beneficial relationship is that formed between forest trees and shrubs and a type of mutualistic fungi known as ectomycorrhizal fungi (ECM). In a compatible reaction, ECM facilitate the plant’s access to nutrients and increase its tolerance to biotic and abiotic stress through formation of an “organ” between fungal hyphae and plant roots called the ECM root tip. However, little is known about the metabolic reprogramming that leads to the development of this hybrid tissue. Researchers at Oak Ridge National Laboratory, funded through the Department of Energy’s Plant-Microbe Interfaces Science Focus Area, characterized the metabolic changes taking place during the interaction between the ECM fungus Laccaria bicolor and two different species of the bioenergy feedstock tree Populus. They found that when P. trichocarpa is colonized by the fungus shifts occurred in aromatic acid, organic acid, and fatty acid metabolism. On the contrary, this metabolic reprogramming was repressed in the incompatible P. deltoides interaction, which was instead characterized by the production of more defense-related secondary metabolites. The results highlight distinct differences in mechanisms control­ling compatibility between beneficial and nonbeneficial inter­actions, and increase under­standing of how plant roots respond to the presence of L. bicolor, which determines the out­come of the fungal-host interaction.

Reference: Tschaplinski, T. J., J. M. Plett, N. L. Engle, A. Deveau, K. C. Cushman, M. Z. Martin, M. J. Doktycz, G. A. Tuskan, A. Brun, A. Kohler, and M. Martin. 2014. “Populus trichocarpa and Populus deltoides Exhibit Different Metabolomic Responses to Colonization by the Symbiotic Fungus Laccaria bicolor,” Molecular Plant-Microbe Interactions 27(6), 546-56. (Reference link)

Contact: Cathy Ronning, SC-23.2, (301) 903-9549
Topic Areas:

  • Research Area: Microbes and Communities
  • Research Area: Plant Systems and Feedstocks, Plant-Microbe Interactions
  • Research Area: Sustainable Biofuels and Bioproducts

Division: SC-23.2 Biological Systems Science Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)