U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Poplar Tree Root Response to Symbiotic Fungus Determines Success of Fungal Colonization
Published: June 01, 2014
Posted: August 11, 2014

Microbial communities sharing the soil environment with plant roots can have a pro­found influence on the overall health and vitality of the plant. One well-known example of a beneficial relationship is that formed between forest trees and shrubs and a type of mutualistic fungi known as ectomycorrhizal fungi (ECM). In a compatible reaction, ECM facilitate the plant’s access to nutrients and increase its tolerance to biotic and abiotic stress through formation of an “organ” between fungal hyphae and plant roots called the ECM root tip. However, little is known about the metabolic reprogramming that leads to the development of this hybrid tissue. Researchers at Oak Ridge National Laboratory, funded through the Department of Energy’s Plant-Microbe Interfaces Science Focus Area, characterized the metabolic changes taking place during the interaction between the ECM fungus Laccaria bicolor and two different species of the bioenergy feedstock tree Populus. They found that when P. trichocarpa is colonized by the fungus shifts occurred in aromatic acid, organic acid, and fatty acid metabolism. On the contrary, this metabolic reprogramming was repressed in the incompatible P. deltoides interaction, which was instead characterized by the production of more defense-related secondary metabolites. The results highlight distinct differences in mechanisms control­ling compatibility between beneficial and nonbeneficial inter­actions, and increase under­standing of how plant roots respond to the presence of L. bicolor, which determines the out­come of the fungal-host interaction.

Reference: Tschaplinski, T. J., J. M. Plett, N. L. Engle, A. Deveau, K. C. Cushman, M. Z. Martin, M. J. Doktycz, G. A. Tuskan, A. Brun, A. Kohler, and M. Martin. 2014. “Populus trichocarpa and Populus deltoides Exhibit Different Metabolomic Responses to Colonization by the Symbiotic Fungus Laccaria bicolor,” Molecular Plant-Microbe Interactions 27(6), 546-56. (Reference link)

Contact: Cathy Ronning, SC-23.2, (301) 903-9549
Topic Areas:

  • Research Area: Microbes and Communities
  • Research Area: Plant Systems and Feedstocks, Plant-Microbe Interactions
  • Research Area: Sustainable Biofuels and Bioproducts

Division: SC-23.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)