U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Evaluating Model Predictions of New Particle Formation in East Asia
Published: October 17, 2013
Posted: March 27, 2014

Aerosol particles play an important role in Earth’s climate through direct effects on Earth’s radiation budget by absorbing and scattering solar radiation and through indirect effects by affecting cloud formation and cloud properties. Atmospheric aerosol particles can be produced by two different methods. Primary particles (e.g., dust, pollen, sea salt, and soot) are emitted directly to the atmosphere, while secondary particles are formed through nucleation and new particle formation (NPF). To accurately predict aerosol concentrations and their effects on climate, numerical climate models need to accurately simulate nucleation and NPF processes in different regions. A team of scientists, including a Department of Energy researcher at Pacific Northwest National Laboratory, applied a method for predicting NPF treatment in the Weather Research Forecasting-Chem (WRF-Chem) model and evaluated the condensation nuclei (CN) concentrations and frequency of NPF events over East Asia predicted by the model simulations. They found the WRF-Chem model can calculate the growth and sink of nucleated clusters explicitly with 20 aerosol sizes from 1 nm to 10 μm. The model reproduced the observed spatial and temporal variations of CN and cloud condensation nuclei (CCN) number concentrations, the frequency of NPF events, and the contribution of primary and secondary particles within the boundary layer over East Asia and its outflow region. Secondary particles formed have a large impact on CN and CCN concentrations, suggesting that NPF events could influence cloud droplets and aerosol indirect effects. This study is the first to apply and evaluate a three-dimensional model that can explicitly calculate new particle formation in East Asia.

Reference: Matsui, H., M. Koike, N. Takegawa, Y. Kondo, A. Takami, T. Takamura, S. Yoon, S.-W. Kim, H.-C. Lim, and J. D. Fast. 2013. “Spatial and Temporal Variations of New Particle Formation in East Asia Using an NPF-Explicit WRF-Chem Model: North-South Contrast in New Particle Formation Frequency,” Journal of Geophysical Research Atmospheres 118,11,647-11,663. DOI: 10.1002/jgrd.50821. (Reference link)

Contact: Sally McFarlane, SC-23.1, (301) 903-0943, Ashley Williamson, SC-23.1, (301) 903-3120
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Atmospheric System Research

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)