U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Understanding Ecological Forces Governing Assembly and Function of Microbial Communities
Published: February 18, 2014
Posted: March 27, 2014

A complex, dynamic, and interactive set of ecological forces governs the assembly of a microbial community in any given environment. The composition and structure of the resulting community in turn controls functional biological processes performed at the site, influencing biogeochemical cycling of nutrients, transport of contaminants, and interactions with other organisms. As such, understanding the rules that govern assembly and successional change of microbial communities in different types of environments is critical to predicting changes in ecosystem-scale processes under changing environmental conditions. In a new study by Lawrence Berkeley National Laboratory’s ENIGMA Science Focus Area, researchers examined mechanisms driving microbial community assembly and succession in an experimentally manipulated groundwater ecosystem. The team tested a set of theoretical models to compare the relative importance of stochastic (i.e., random) and deterministic processes in shaping community structure after an environmental change (in this case, the addition of nutrients). Community assembly and succession were found to be driven by a dynamic, time-dependent interaction of stochastic and deterministic processes, with stochastic forces dominating. By identifying the mechanisms controlling microbial community assembly and succession, this study makes an important contribution to the mechanistic understanding essential for a predictive microbial ecology of natural and managed ecosystems.

Reference: Zhou, J., Y. Deng, P. Zhang, K. Xue, Y. Liang, J. D. Van Nostrand, Y. Yang, Z. He, L. Wu, D. A. Stahl, T. C. Hazen, J. M. Tiedje, and A. P. Arkin. 2014. “Stochasticity, Succession, and Environmental Perturbations in a Fluidic Ecosystem,” Proceedings of the National Academy of Sciences (USA), DOI: 10.1073/pnas.1324044111. (Reference link)

Contact: Joseph Graber, SC-23.2, (301) 903-1239
Topic Areas:

  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Microbes and Communities
  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: Computational Biology, Bioinformatics, Modeling

Division: SC-23.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)