U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Determining Hydrological Controls on Flood Frequency
Published: February 05, 2014
Posted: March 27, 2014

Flooding is a major natural hazard with significant societal, economic, hydrological, and ecological consequences. To improve flood frequency estimates, a recent study, led by U.S. Department of Energy scientists at Pacific Northwest National Laboratory, provides insights on the connections between flood frequency and the annual water balance. Researchers performed the study using data from several hundred catchments across the continental United States. The research expressed mean annual water balance in terms of two controlling measures: (1) the climatic aridity index (AI), which is a measure of the competition between evaporation and precipitation, and (2) the base flow index (BFI), which is a measure of total runoff partitioning into surface and subsurface components at the annual time scale. Their results showed that the AI has a first-order control on the shape of the flood frequency curve in terms of the mean and variability of the annual maximum floods. While the mean annual flood discharge decreases with increasing aridity, variability increases. In contrast, the BFI was found to exert a second-order control on the flood frequency. Higher BFI, meaning higher contributions of subsurface flow to total streamflow, leads to a decrease of the mean annual (specific) flood discharge, and vice versa. By attributing regional variations of the flood frequency curve to AI and BFI, this study provided the basis to delineate hydrological regions using the two indices for flood frequency regionalization, which may help improve flood estimation and prediction.

Reference: Guo, J., H. Li, L. R. Leung, S. Guo, P. Liu, and M. Sivapalan. 2013. “Links Between Flood Frequency and Annual Water Balance Behaviors: A Basis for Similarity and Regionalization,” Water Resources Research, DOI: 10.1002/2013WR014374. (Reference link)

Contact: Renu Joseph, SC-23.1, (301) 903-9237, Dorothy Koch, SC-23.1, (301) 903-0105
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)