U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


New Method for Identifying Genetic Regulatory Networks in Poplar
Published: November 26, 2013
Posted: March 27, 2014

Wood is an important renewable material for bioenergy and other industrial products, but its formation, a complex process regulated at many levels, is poorly understood. Such processes often involve interactions between regulatory genes known as transcription factors (TFs) and their direct DNA targets. These TF-DNA interactions constitute a regulatory hierarchy. To begin to understand these systems in poplar trees, researchers at North Carolina State University funded by the Department of Energy’s Genomic Science Program developed a robust, high-throughput pipeline to study the hierarchy of genetic regulation of wood formation using tissue-specific single cells known as protoplasts. A new method for isolating protoplasts from the wood-forming stem differentiating xylem (SDX) tissues of Populus trichocarpa was developed and used to study the expression of a specific poplar TF affecting wood formation. By integrating this novel system with computational approaches, a hierarchical layer of genes was inferred that was then functionally validated in SDX. This approach will be particularly useful in studying complex processes in plant species that lack mutants and a stable transformation system. It also can be used to improve forest tree productivity with more precise genetic approaches.

Reference: Lin, Y.-C., W. Li, Y.-H. Sun, S. Kumari, H. Wei, Q. Li, S. Tunlaya-Anukit, R. R. Sederoff, and V. L. Chiang VL. 2013. “SND1 Transcription Factor-Directed Quantitative Functional Hierarchical Genetic Regulatory Network in Wood Formation in Populus trichocarpa,” Plant Cell 25, 4324-41. DOI: 10.1105/tpc.113.117697. (Reference link)

Contact: Cathy Ronning, SC-23.2, (301) 903-9549
Topic Areas:

  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Plant Systems and Feedstocks, Plant-Microbe Interactions
  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: Computational Biology, Bioinformatics, Modeling
  • Research Area: Research Technologies and Methodologies

Division: SC-23.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)