BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Discovery of Key Brachypodium Regulators May Help Improve Bioenergy Feedstocks
Published: December 24, 2013
Posted: March 27, 2014

The wild grass Brachypodium distachyon is a model system for temperate grasses, including biofuel plants such as switchgrass and Miscanthus. Because of its relatively small, sequenced genome and a large and growing number of genetic and genomic resources, Brachypodium is useful for studying bioenergy-relevant traits such as grass cell wall characteristics and regulation of plant processes. One key type of regulator is microRNAs (miRNAs), short RNA moleculas involved in many processes such as development and stress response. miRNAs regulate expression of specific genes by pairing with target mRNAs. While many miRNAs have been identified in plants, little is known about these critical regulators in temperate grasses. With funding from the joint U.S. Department of Agriculture-Department of Energy Plant Feedstocks Genomics for Bioenergy program, researchers sequenced small RNAs from different tissues and environmental stress-treated Brachypodium plants and identified miRNAs using a computational approach. Both conserved, newly discovered miRNAs and nonconserved miRNAs not found in other plants were detected. Newly identified regulation of a flowering time gene was found, as well as miRNAs differentially expressed in various tissues. The results improve understanding of the role of miRNAs and their target-specific regulation in Brachypodium and related grasses, and may suggest strategies for bioenergy crop improvement.

Reference: Jeong, D.-H., S. A. Schmidt, L. A. Rymarquis, S. Park, M. Ganssmann, M. A. German, M. Accerbi, J. Zhai, N. Fahlgren, S. E. Fox, D. F. Garvin, T. C. Mockler, J. C. Carrington, B. C. Meyers, and P. J. Green. 2013. “Parallel Analysis of RNA Ends Enhances Global Investigation of microRNAs and Target RNAs of Brachypodium distachyon,” Genome Biology 14, R145. DOI: 10.1186/gb-2013-14-12-r145. (Reference link)

Contact: Cathy Ronning, SC-23.2, (301) 903-9549
Topic Areas:

  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Plant Systems and Feedstocks, Plant-Microbe Interactions
  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: Computational Biology, Bioinformatics, Modeling

Division: SC-33.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)