BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Improved Parameterization of Water Vapor Transport in Stratocumulus Clouds
Published: November 09, 2013
Posted: March 27, 2014

Vast areas of low-level stratocumulus clouds are observed over the southeast Pacific west of Chile and Peru. These low-level clouds are significantly brighter and reflect more solar radiation than the ocean and thus have a large impact on Earth’s radiation budget. Accurate representation of processes controlling the formation and lifecycle of these clouds in global climate model (GCM) simulations is important for future climate predictions. Since many of the processes associated with these clouds occur at spatial scales poorly resolved by GCMs, these cloud formation processes and their associated effects on Earth’s radiation budget must be parameterized.

Stratocumulus clouds are formed and maintained by turbulent processes in the marine boundary layer that transport water vapor upward from the ocean surface. To predict stratocumulus cloud cover, it is important to understand the factors controlling this water vapor transport. A research team funded by the U.S. Department of Energy’s Atmospheric System Research program used observations from a multi-agency field campaign to examine the processes controlling water vapor transport in these clouds. In a unique analysis, data from a Doppler radar and lidar were combined to observe the turbulence structure of the entire stratocumulus-topped marine boundary layer from cloud top to cloud base. These data were complemented by measurements of the cloud liquid water and atmospheric water vapor from a microwave radiometer and surface flux measurements.

The researchers found that the principal mechanism controlling transport of water vapor to clouds is radiative cooling near the tops of the clouds, together with the difference between the sea surface temperature and the air temperature. By taking into account this new information and the change in the wind speed with height, they were able to predict most of the upward transport of air and water vapor from the ocean surface to the clouds. This new formulation of the convective velocity scale could improve GCM parameterizations of stratocumulus cloud formation and evolution.

Reference: Ghate, V. P., B. A. Albrecht, M. A. Miller, A. Brewer, and C. W. Fairall. 2014. “Turbulence and Radiation in Stratocumulus-Topped Marine Boundary Layers: A Case Study from VOCALS-Rex,” Journal of Applied Meteorology and Climatology 53, 117-35. DOI: link)

Contact: Sally McFarlane, SC-23.1, (301) 903-0943, Ashley Williamson, SC-23.1, (301) 903-3120
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Atmospheric System Research

Division: SC-33.1 Earth and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Jan 11, 2022
No Honor Among Copper Thieves
Findings provide a novel means to manipulate methanotrophs for a variety of environmental and in [more...]

Dec 06, 2021
New Genome Editing Tools Can Edit Within Microbial Communities
Two new technologies allow scientists to edit specific species and genes within complex laborato [more...]

Oct 27, 2021
Fungal Recyclers: Fungi Reuse Fire-Altered Organic Matter
Degrading pyrogenic (fire-affected) organic matter is an important ecosystem function of fungi i [more...]

Oct 19, 2021
Microbes Offer a Glimpse into the Future of Climate Change
Scientists identify key features in microbes that predict how warming affects carbon dioxide emi [more...]

Aug 25, 2021
Assessing the Production Cost and Carbon Footprint of a Promising Aviation Biofuel
Biomass-derived DMCO has the potential to serve as a low-carbon, high-performance jet fuel blend [more...]

List all highlights (possible long download time)