U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Novel Methanogenic Microbe Discovered in Thawing Permafrost
Published: February 14, 2014
Posted: March 27, 2014

Northern high-latitude ecosystems are undergoing rapid changes with rising temperatures catalyzing the transition of many permafrost sites to wetlands. As the organic carbon locked in permafrost thaws, it becomes accessible to decomposition by microbial communities. Understanding of these communities is limited, especially regarding functional processes that impact rates of carbon degradation and the balance of carbon dioxide (CO2) versus methane (CH4) released to the atmosphere. In a new U.S. Department of Energy Genomic Science Program study led by researchers at the University of Arizona, a combination of metagenomics, metaproteomics, and geochemical flux measurements were used to characterize microbial community structure and function at a thawing permafrost site in northern Sweden. A new species of archaea, Candidatus Methanoflorens stordalenmirensis, was found to dominate methanogen populations in the thawing active layer of permafrost. Using deep metagenomic sequencing, the team was able to assemble a nearly complete genome from this organism and identify the metabolic pathway for methanogenesis—consumption of hydrogen and CO2 and production of CH4. Measurements of CH4 flux at the thawing permafrost site and quantitative in situ detection of M. stordalenmirensis methanogensis proteins suggest that this organism may perform the majority of methane production at these sites, especially during thawing. The team also searched published metagenomic libraries collected from permafrost sites across the northern hemisphere and detected closely related methanogens at high numbers in the majority of sites. The dominance of a single organism in methane production is a surprising finding. Given evidence for the global distribution of this type methanogen in thawing permafrost sites, these results may have wide-ranging implications for understanding of climate change impacts.

Reference: Mondav, R., B. J. Woodcroft, E.-H. Kim, C. K. McCalley, S. B. Hodgkins, P. M. Crill, J. Chanton, G. B. Hurst, N. C. VerBerkmoes, S. R. Saleska, P. Hugenholtz, V. I. Rich, and G. W. Tyson. 2014. “Discovery of a Novel Methanogen Prevalent in Thawing Permafrost,” Nature Communications 5, DOI: 10.1038/ncomms4212. (Reference link)

Contact: Joseph Graber, SC-23.2, (301) 903-1239
Topic Areas:

  • Research Area: Subsurface Biogeochemical Research
  • Research Area: Carbon Cycle, Nutrient Cycling
  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Microbes and Communities

Division: SC-23.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)