BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Understanding Mineral Transport in Switchgrass for Enhanced Sustainability
Published: January 02, 2014
Posted: March 27, 2014

A viable bioenergy industry will depend on the development of sustainably grown feedstocks, which are bioenergy crops that yield high amounts of biomass with minimal inputs of water, fertilizer, and other chemicals. The efficient acquisition and mobilization of mineral nutrients by feedstocks are key to their sustainability. Additionally, the platform used to produce biofuel from plant feedstocks (e.g., pyrolysis and thermochemical) is affected by biomass minerals (e.g., high levels of silicon in ash decreases conversion efficiency). In perennial bioenergy plants such switchgrass, certain minerals are recycled—mobilized from senescing tissues in the autumn to perennial crowns, rhizomes, and roots for winter storage, and remobilized and translocated to growing stem and leaf tissues in the spring. This seasonal storage and recycling of minerals depends on specific transporters for movement into and out of cells, a poorly understood process. With funding from the joint U.S. Department of Agriculture-Department of Energy Plant Feedstocks Genomics for Bioenergy activity, researchers combined bioinformatics and real-time qRT-PCR approaches to classify mineral transporter genes and gene families in switchgrass and to discern differential expression of these genes during the growing season. In this first molecular study of mineral transporter genes in switchgrass, 520 genes in 40 different families were identified and both tissue and temporal specificity of expression was observed. These results provide the foundation for correlating expression of specific genes with mineral translocation. This will facilitate functional characterization of genes critical for efficient nutrient transport and use and will lead to the development of sustainable, high-yielding switchgrass cultivars.

Reference: Palmer, N. A., A. J. Saathoff, B. M. Waters, T. Donze, T. M. Heng-Moss, P. Twigg, C. M. Tobias, and G. Sarath. 2014. “Global Changes in Mineral Transporters in Tetraploid Switchgrasses (Panicum virgatum L.),” Frontiers in Plant Science 4, DOI: 10.3389/fpls.2013.00549. (Reference link)

Contact: Cathy Ronning, SC-23.2, (301) 903-9549
Topic Areas:

  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Plant Systems and Feedstocks, Plant-Microbe Interactions
  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: Computational Biology, Bioinformatics, Modeling

Division: SC-33.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)