BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Isoprene Fluxes from an Oak-Dominated Temperate Forest
Published: February 01, 2014
Posted: February 12, 2014

Isoprene is a biogenic volatile organic compound. Its oxidation in the atmosphere affects both the production of tropospheric ozone and secondary aerosol formation. Isoprene production by plants, therefore, has implications for the control of regional air quality and global climate change. Scientists at Oak Ridge National Laboratory recently conducted a study to understand these isoprene emissions and to test predictive models at multiple scales. The study took place at the Missouri Ozark AmeriFlux (MOFLUX) site in central Missouri, an oak-hickory dominated forest. Ecosystem fluxes of isoprene emissions were measured during the 2011 growing season. The isoprene flux measurements were used to test understanding of the controls on isoprene emission from hourly to seasonal timescales with a state-of-the-art emission model, MEGAN (Model of Emissions of Gases and Aerosols from Nature). Isoprene emission rates observed during the drought of 2011 reached 53.3 mg m-2 h-1 (217 nmol m-2 s-1), the highest ever recorded for any ecosystem in the world. The MEGAN model correctly predicted isoprene emission rates before drought, but its performance deteriorated as the drought progressed (in response to water stress). Overall, MEGAN’s performance was robust and could explain 90% of the observed variance in the measured fluxes, but the response of isoprene emission to drought stress is a major source of uncertainty. Since isoprene is chemically reactive in the atmosphere, it is critically important to understand these emissions as well as to incorporate this process into atmosphere-biosphere models.

Reference: Potosnak, M. J., L. LeStourgeon, S. G. Pallardy, K. P. Hosman, L. H. Gu, T. Karl, C. Gerone, and A. B. Guenther. 2014. “Observed and Modeled Ecosystem Isoprene Fluxes from an Oak-Dominated Temperate Forest and the Influence of Drought Stress,” Atmospheric Environment 84, 314–22. (Reference link)

Contact: Mike Kuperberg, SC-23.1, (301) 903-3281, Daniel Stover, SC-23.1, (301) 903-0289
Topic Areas:

  • Research Area: Atmospheric System Research
  • Research Area: Terrestrial Ecosystem Science

Division: SC-33.1 Earth and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Jan 11, 2022
No Honor Among Copper Thieves
Findings provide a novel means to manipulate methanotrophs for a variety of environmental and in [more...]

Dec 06, 2021
New Genome Editing Tools Can Edit Within Microbial Communities
Two new technologies allow scientists to edit specific species and genes within complex laborato [more...]

Oct 27, 2021
Fungal Recyclers: Fungi Reuse Fire-Altered Organic Matter
Degrading pyrogenic (fire-affected) organic matter is an important ecosystem function of fungi i [more...]

Oct 19, 2021
Microbes Offer a Glimpse into the Future of Climate Change
Scientists identify key features in microbes that predict how warming affects carbon dioxide emi [more...]

Aug 25, 2021
Assessing the Production Cost and Carbon Footprint of a Promising Aviation Biofuel
Biomass-derived DMCO has the potential to serve as a low-carbon, high-performance jet fuel blend [more...]

List all highlights (possible long download time)