U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Earthworms Affect Forest Soil Carbon Stabilization
Published: October 08, 2013
Posted: February 12, 2014

The role of soils in mitigating increases in atmospheric carbon dioxide (CO2) is uncertain, in part due to the complex biotic and abiotic interactions determining soil carbon change. Earthworms, in particular, interact with the physical and chemical protection mechanisms of organic matter, major determinants of carbon storage capacity of soils. Protection of enhanced plant litter inputs from rapid decomposition by soil aggregates was a key mechanism facilitating the carbon gain observed in surface soils of the sweetgum forest Free-Air CO2 Enrichment (FACE) experiment in Oak Ridge, TN. To evaluate whether two earthworm species with different feeding behaviors played a role in soil aggregate formation and the stabilization of leaf and/or root litter in these aggregates, Department of Energy researchers conducted a laboratory incubation experiment with earthworms plus isotopically labeled soil and plant materials from the sweetgum FACE site. Compared to the experimental treatments without worms, the presence of either earthworm species increased the formation of soil macroaggregates (greater than 250 µm in diameter). The invasive European earthworm species, which feeds on both plant residues and soil organic matter, incorporated significant amounts of leaf- and root-derived carbon, in addition to soil-derived carbon, into newly formed aggregates. In contrast, the native earthworm species, which feeds mostly on soil organic matter, produced almost twice as many aggregates, but hardly any of the carbon in these aggregates was derived from the added plant materials. Overall, these findings suggest that the presence or absence of earthworms—and specifically the type of earthworm—could be an important factor contributing to the fate of increased plant litter produced as a result of rising atmospheric CO2 concentrations.

Reference: Sánchez-de León, Y., J. Lugo-Pérez, D. H. Wise, J. D. Jastrow, and M. A. González-Meler. 2014. “Aggregate Formation and Carbon Sequestration by Earthworms in Soil from a Temperate Forest Exposed to Elevated Atmospheric CO2: A Microcosm Experiment,” Soil Biology and Biochemistry 68, 223–30. (Reference link)

Contact: Mike Kuperberg, SC-23.1, (301) 903-3281, Daniel Stover, SC-23.1, (301) 903-0289
Topic Areas:

  • Research Area: Terrestrial Ecosystem Science
  • Research Area: Free Air CO2 Enrichment (FACE)

Division: SC-23.1 Climate and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)