BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Stability of Soil Organic Carbon: Impacts of Particle Size
Published: November 15, 2013
Posted: February 12, 2014

Studies comparing the mineralization rate of organic carbon (C) associated with different particle size fractions are extremely limited. Organic C associated with the mineral fraction, in particular, is thought to have long residence times. Studies of C decomposition as a function of particle size should improve the representation of long-term C stabilization processes in terrestrial carbon cycle models. A recent study at Oak Ridge National Laboratory sought to quantify decomposition of native soil organic C and a newly added C substrate from both particulate and mineral soil pools. Five different soils were fractionated into particulate (> 53 µm) and mineral (< 53 µm) fractions, radiolabeled with glucose, and incubated for 150 days. Results indicated that the mineralization of native soil organic C was higher from the particulate fraction than the mineral fraction, while mineralization of glucose was similar from both fractions. Furthermore, native organic C in the soil mineral fraction was observed to be resistant to decomposition, in contrast to added glucose which was readily decomposed. Glucose additions therefore appear to be an inadequate surrogate for quantifying long residence times of organic C associated with soil minerals. Although we currently lack adequate experimental data on mineral-associated fractions, this study represents a significant step toward improving our understanding of long-term C stability of soil organic matter and representing these mechanisms in ecosystem-scale models.

Reference: Jagadamma, S., J. M. Steinweg, M. A. Mayes, G. Wang, and W. M. Post. 2013. “Decomposition of Added and Native Organic Carbon from Physically Separated Fractions of Diverse Soils,” Biology and Fertility of Soils, DOI:10.1007/s00374-013-0879-2. (Reference link)

Contact: Mike Kuperberg, SC-23.1, (301) 903-3281, Daniel Stover, SC-23.1, (301) 903-0289
Topic Areas:

  • Research Area: Terrestrial Ecosystem Science
  • Research Area: Carbon Cycle, Nutrient Cycling

Division: SC-33.1 Earth and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)