U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Evaluation of Precipitation in Climate Models Using ARM Data
Published: August 01, 2013
Posted: February 07, 2014

Precipitation is one of the most poorly parameterized physical processes in global climate models (GCMs). Scientists often utilize a single grid-box column of a GCM, or a single-column model (SCM), to more efficiently study and test the process representations or parameterization schemes in GCMs. The SCM approach is also a key strategy of the Department of Energy’s (DOE) Atmospheric Radiation Measurement (ARM) Facility and Atmospheric System Research (ASR) activity. However, most of the SCM intercomparison studies organized by ARM have been focused on special cases, or week-to-month-long periods. To make a statistically meaningful comparison and evaluation on modeled precipitation, three-year-long SCM simulations of seven GCMs participating in the FASTER project at the ARM Southern Great Plains site have been carried out by DOE scientists at Brookhaven National Laboratory. The results show that although most SCMs can reproduce the observed average precipitation reasonably well, there are significant differences in their details, including differences (both among models and between models and observations) between daytime and nighttime, between warm and cold seasons, between frequency and mean precipitation intensity, and between convective and stratiform partition. Further analysis reveals distinct meteorological backgrounds for large underestimation and overestimation precipitation events. The former occur in strong ascending regimes with negative low-level horizontal heat and moisture influx, whereas the latter occur in the weak or moderate ascending regimes with positive low-level horizontal heat and moisture influx. The different SCM performances and associations with large-scale conditions provide useful insights on how to improve representation of convection in climate models as well as improved approaches for future testing.

Reference:Song, H., W. Lin, Y. Lin, A. B. Wolf, R. Neggers, L. J. Donner, A. D. Del Genio, and Y. Liu. 2013. “Evaluation of Precipitation Simulated by Seven SCMs Against the ARM Observation at the SGP Site,” Journal of Climate 26, 5467-92. DOI:10.1175/JCLI-D-12-00263.1. (Reference link)

Contact: Dorothy Koch, SC-23.1, (301) 903-0105
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Facility: DOE ARM User Facility

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)