U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Effects of Upper Atmospheric Chemistry Uncertainties on Ozone and Circulation
Published: August 29, 2013
Posted: February 07, 2014

Ozone (O3) is produced naturally in the upper atmosphere (stratosphere). It protects life at Earth’s surface acting as a shield from harmful solar radiation. As climate changes, and as humans have emitted O3-destroying substances over recent decades, the amount of stratospheric O3 has changed. Since O3 absorbs sunlight heating the local air, changes in O3 have important effects on stratospheric temperatures and circulation. However, climate scientists are limited in their ability to simulate stratospheric O3 and dynamics due to basic uncertainties about the stratospheric chemical reactions that lead to O3 formation. In a recent Department of Energy study, researchers varied the O3 formation rate based on uncertainties in the observed oxygen amount, using the Community Atmosphere Model. The result was dramatic changes in O3 in the lower stratosphere and in the temperature. However, the key question is whether this changes overall stratospheric circulation and the net flux of stratospheric O3 into the lower atmosphere (troposphere). The team found that reducing the oxygen counterintuitively resulted in increased O3 in the lowermost stratosphere (less shielding of sunlight from above) and increased temperatures by up to 2 °C, creating greater stratification near the tropopause (the thermal boundary between the lower and upper atmosphere). As a consequence, the dynamical coupling between stratosphere and troposphere changes, affecting the tropical annual cycle of temperature and O3 in the lower stratosphere, but the overall circulation of the stratosphere is hardly altered. They also found that this warming in the lower-middle stratosphere due to increased O3 production has an impact on tropospheric climate as well. Uncertainties in the transport of certain chemical species that affect O3 production from the lower atmosphere to the stratosphere may also be important and should be investigated in future studies.

Reference: Hsu, J., M. Prather, D. Bergmann, and P. Cameron-Smith. 2013. “Sensitivity of Stratospheric Dynamics to O3 Production,” Journal of Geophysical Research Atmospheres 118, 8984-99. DOI:10.1002/jgrd.50689. (Reference link)

Contact: Dorothy Koch, SC-23.1, (301) 903-0105
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling

Division: SC-23.1 Climate and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)