U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Arctic Ocean Sea Ice Snow Depth Simulation Impacts Community Climate System Model
Published: December 13, 2013
Posted: February 07, 2014

Sea-ice cover in the Arctic Ocean continues to be a focus area as the amount of summer ice has declined significantly in recent years. Sea-ice loss is expected to accelerate warming and further loss due to the exposure of significantly more open Arctic water with lower albedo. Thus, it is critical that climate models accurately simulate sea-ice features and processes. A recent study team, including a Department of Energy (DOE)-funded researcher at Los Alamos National Laboratory, investigated the importance of snow overlying sea ice in the Arctic Ocean. Snow depth errors or biases in the Community Climate System Model (CCSM), using the DOE-sponsored sea-ice model CICE, were shown to impact not only the sea ice properties, but also the overall Arctic climate. Following the identification of these seasonal snow biases, the thermodynamic transfer through the snow-ice column was perturbed to determine model sensitivity to these biases. The study concluded that perturbations on the order of the observed biases result in modification of the annual mean conductive energy flux through the snow-ice column and suggested that the ice has a complex response to snow characteristics, with ice of different thicknesses producing distinct reactions. The results indicate the importance of an accurate simulation of snow on the Arctic sea ice, and simple “tuning” of an overly simplistic scheme will not capture the nonlinearities in processes. Consequently, future work investigating the impact of current precipitation biases and missing snow processes, such as blowing snow, densification, and seasonal changes, is warranted.

Reference:Blazey, B. A., M. M. Holland, and E. C. Hunke. 2013. “Arctic Ocean Sea Ice Snow Depth Evaluation and Bias Sensitivity in CCSM,” The Cryosphere 7, 1887-1900. DOI:10.5194/tc-7-1887-2013. (Reference link)

Contact: Dorothy Koch, SC-23.1, (301) 903-0105
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling

Division: SC-23.1 Climate and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)