BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Combining Ground Station and Satellite Data for Better Estimates of CO2 Emissions
Published: September 03, 2013
Posted: February 07, 2014

Scientists from Lawrence Berkeley National Laboratory present one of the first estimates of the global distribution of CO2 surface fluxes using total column CO2 measurements retrieved by the SRON-KIT RemoTeC algorithm from the Greenhouse gases Observing SATellite (GOSAT). The international research team used a series of calculations to combine data from the satellite over an 18-month period with nearly 17,000 surface-level observations from 132 locations during the same period. The team used this data to estimate the CO2 sources and sinks around the world. Their global scale results compared favorably to independent estimates made by government agencies, while at regional scales some differences raised questions for future exploration. The study shows that assimilating the bias corrected satellite data on top of surface CO2 data reduces the estimated global CO2 land sink and shifts the net terrestrial carbon uptake from the tropics to the extratropics. It is concluded that while GOSAT total column CO2 provides useful constraints for source-sink inversions, small spatiotemporal biases €"beyond what can be detected using current validation techniques €"have serious consequences for optimized fluxes, even aggregated over continental scales.

Reference: Basu, S., S. Guerlet, A. Butz, S. Houweling, O. Hasekamp, I. Aben, P. Krummel, P. Steele, R. Langenfeld, M. Torn, S. Biraud, B. Stephens, A. Andrews, and D. Worthy. 2013. “Global CO2 Fluxes Estimated from GOSAT Retrievals of Total Column CO2,” Atmospheric Chemistry and Physics 13, 8695-717. DOI:10.5194/acp-13-8695-2013. (Reference link)

Contact: Wanda Ferrell, SC-23.1, (301) 903-0043, Mike Kuperberg, SC-23.1, (301) 903-3281, Rickey Petty, SC-23.1, (301) 903-5548, Daniel Stover, SC-23.1, (301) 903-0289
Topic Areas:

  • Research Area: Terrestrial Ecosystem Science
  • Research Area: Carbon Cycle, Nutrient Cycling
  • Facility: DOE ARM User Facility

Division: SC-33.1 Earth and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Jan 11, 2022
No Honor Among Copper Thieves
Findings provide a novel means to manipulate methanotrophs for a variety of environmental and in [more...]

Dec 06, 2021
New Genome Editing Tools Can Edit Within Microbial Communities
Two new technologies allow scientists to edit specific species and genes within complex laborato [more...]

Oct 27, 2021
Fungal Recyclers: Fungi Reuse Fire-Altered Organic Matter
Degrading pyrogenic (fire-affected) organic matter is an important ecosystem function of fungi i [more...]

Oct 19, 2021
Microbes Offer a Glimpse into the Future of Climate Change
Scientists identify key features in microbes that predict how warming affects carbon dioxide emi [more...]

Aug 25, 2021
Assessing the Production Cost and Carbon Footprint of a Promising Aviation Biofuel
Biomass-derived DMCO has the potential to serve as a low-carbon, high-performance jet fuel blend [more...]

List all highlights (possible long download time)