U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Combining Ground Station and Satellite Data for Better Estimates of CO2 Emissions
Published: September 03, 2013
Posted: February 07, 2014

Scientists from Lawrence Berkeley National Laboratory present one of the first estimates of the global distribution of CO2 surface fluxes using total column CO2 measurements retrieved by the SRON-KIT RemoTeC algorithm from the Greenhouse gases Observing SATellite (GOSAT). The international research team used a series of calculations to combine data from the satellite over an 18-month period with nearly 17,000 surface-level observations from 132 locations during the same period. The team used this data to estimate the CO2 sources and sinks around the world. Their global scale results compared favorably to independent estimates made by government agencies, while at regional scales some differences raised questions for future exploration. The study shows that assimilating the bias corrected satellite data on top of surface CO2 data reduces the estimated global CO2 land sink and shifts the net terrestrial carbon uptake from the tropics to the extratropics. It is concluded that while GOSAT total column CO2 provides useful constraints for source-sink inversions, small spatiotemporal biases €"beyond what can be detected using current validation techniques €"have serious consequences for optimized fluxes, even aggregated over continental scales.

Reference: Basu, S., S. Guerlet, A. Butz, S. Houweling, O. Hasekamp, I. Aben, P. Krummel, P. Steele, R. Langenfeld, M. Torn, S. Biraud, B. Stephens, A. Andrews, and D. Worthy. 2013. “Global CO2 Fluxes Estimated from GOSAT Retrievals of Total Column CO2,” Atmospheric Chemistry and Physics 13, 8695-717. DOI:10.5194/acp-13-8695-2013. (Reference link)

Contact: Wanda Ferrell, SC-23.1, (301) 903-0043, Mike Kuperberg, SC-23.1, (301) 903-3281, Rickey Petty, SC-23.1, (301) 903-5548, Daniel Stover, SC-23.1, (301) 903-0289
Topic Areas:

  • Research Area: Terrestrial Ecosystem Science
  • Research Area: Carbon Cycle, Nutrient Cycling
  • Facility: DOE ARM User Facility

Division: SC-23.1 Climate and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)