BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Improving Methods for Measuring Mesophyll Conductance in Response to CO2
Published: December 17, 2013
Posted: February 07, 2014

Current studies with the chlorophyll fluorescence-based (i.e., variable J) method have reported that mesophyll conductance rapidly decreases with increasing intercellular CO2 partial pressures or decreasing solar irradiance. However, the current method can produce an artifactual dependence of gas conductance in the leaf. A new study at Oak Ridge National Laboratory has identified deficiencies in the chlorophyll fluorescence-based (i.e., variable J) and carbon isotope-based (i.e., online carbon isotope discrimination) methods for measuring mesophyll conductance and has proposed effective solutions. They also derived a new photosynthesis carbon isotope discrimination equation that considers multiple CO2 sources for carboxylation. The significance of this work lies in our understanding of mesophyll conductance, since it is crucial for understanding and predicting responses of photosynthesis to increases in atmospheric CO2. As a result of this study, scientists will be able to improve key methods for measuring mesophyll conductance that will improve the representation of photosynthesis and carbon isotope discrimination in carbon cycle models. Additionally, since photosynthesis is the foundation for the terrestrial carbon isotope ecology, this study will facilitate the application of carbon isotopes in studying ecological processes.

Reference: Gu, L., and Y. Sun. 2013. “Artefactual Responses of Mesophyll Conductance to CO2 and Irradiance Estimated with the Variable J and Online Isotope Discrimination Methods,” Plant, Cell and Environment, DOI:10.1111/pce.12232. (Reference link)

Contact: Mike Kuperberg, SC-23.1, (301) 903-3281, Daniel Stover, SC-23.1, (301) 903-0289
Topic Areas:

  • Research Area: Terrestrial Ecosystem Science
  • Research Area: Carbon Cycle, Nutrient Cycling

Division: SC-33.1 Earth and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)