U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

New Radar Technique Provides Insight into Cloud Turbulence Parameters
Published: November 09, 2013
Posted: February 07, 2014

Continental stratocumulus clouds are frequently observed on the cold side of midlatitude frontal systems. Since they can affect the local surface temperature and energy and water budget, as well as the local climate, their impacts need to be accurately represented in weather and climate models. Large-scale numerical models often have difficulty correctly representing the lifetime and impacts of these cloud types, because the small-scale turbulence structures important to cloud maintenance and cloud properties are smaller than the grid spacing of the models. Department of Energy (DOE) scientists developed a new method to derive a turbulence parameter known as the eddy dissipation rate from DOE’s Atmospheric Radiation Measurement (ARM) program’s millimeter wavelength cloud radar Doppler spectrum measurements. Applying this method to radar data from the ARM Southern Great Plains site, the team examined the details of turbulence structures associated with observed stratocumulus clouds.

The team found that forcing processes that maintained turbulence in the cloud varied throughout its lifetime, driven by both surface heating and cloud-top cooling during the day and cloud-top cooling at night. Small-scale turbulence contributed 40% of the total velocity variance at cloud base, but 70% at cloud top, suggesting that small-scale turbulence plays a critical role near the cloud top where entrainment and cloud-top radiative cooling act. This study illustrates the utility of using the Doppler spectrum width from the millimeter wavelength cloud radar to investigate processes driving the turbulence structure of stratocumulus clouds. Turbulence parameters inferred from these observations can be used to evaluate subgrid parameterizations used in numerical models operating on a variety of scales and can aid in the development of parameterizations of dissipation rates for numerical models. Further, the eddy dissipation rate estimates from the radar spectrum have a strong potential for advancing the understanding of important processes such as cloud-top entrainment and the development of drizzle.

References: Fang, M., B. A. Albrecht, V. P. Ghate, and P. Kollias. 2013. "Turbulence in Continental Stratocumulus, Part I: External Forcings and Turbulence Structures," Boundary-Layer Meteorology 149(454), DOI:10.1007/s10546-013-9873-3. (Reference link)

Fang, M., B. A. Albrecht, V. P. Ghate, and P. Kollias. 2013. "Turbulence in Continental Stratocumulus, Part II: Eddy Dissipation Rates and Large-Eddy Coherent Structures," Boundary-Layer Meteorology 149(454), DOI:10.1007/s10546-013-9872-4. (Reference link)

Contact: Wanda Ferrell, SC-23.1, (301) 903-0043, Sally McFarlane, SC-23.1, (301) 903-0943, Ashley Williamson, SC-23.1, (301) 903-3120
Topic Areas:

  • Research Area: Atmospheric System Research
  • Facility: DOE ARM User Facility

Division: SC-23.1 Climate and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)