U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Isoprene Discovered to be an Antioxidant
Published: July 23, 2013
Posted: February 07, 2014

A fraction of net carbon assimilation can be re-released as isoprene by many tropical plants; however, much uncertainty remains about its biological significance. A comprehensive analysis of the suite of isoprene oxidation products in plants has not been performed and production relationships with environmental stress have not been described. Traditionally, isoprene is assumed to only be oxidized in the atmosphere to methyl vinyl ketone, methacrolein, and 3-methly furan. Abiotic stress (e.g., high temperature, light, and freeze-thaw) is known to induce oxidative stress in plants. A study conducted at Lawrence Berkeley National Laboratory, in conjunction with the Department of Energy’s GOAmazon campaign in Brazil, aimed to identify and quantify emissions of potential isoprene oxidation products from mango tree leaves as a function of temperature. Isoprene oxidation products including methyl vinyl ketone, methacrolein, and 3-methyl furan were measured as direct emissions from mango trees grown in environmental chambers. Isoprene oxidation also was measured in a tropical mesocosm (Bisophere 2). These measurements were taken at the leaf, branch, mesocosm, and whole ecosystem scale using chamber and tower sampling systems. The study’s results indicate that emissions of isoprene oxidation products from plants increase with abiotic stress and may be associated with lipid peroxidation at high temperatures. The results suggest that isoprene is an important ecosystem antioxidant involved in signaling processes through the formation of reactive electrophile species. These observations highlight the need to investigate further the mechanisms of isoprene oxidation in plants under stress and its biological and atmospheric significance.

Reference: Jardine, K. J., K. Meyers, L. Abrell, E. G. Alves, A. M. Yanez Serrano, J.  Kesselmeier, T. Karl, A. Guenther, J. Q. Chambers, and C. Vickers. 2013. “Emissions of Putative Isoprene Oxidation Products from Mango Branches Under Abiotic Stress,” Journal of Experimental Botany 64(12), 3669-79. (Reference link)

Contact: Mike Kuperberg, SC-23.1, (301) 903-3281, Daniel Stover, SC-23.1, (301) 903-0289
Topic Areas:

  • Research Area: Terrestrial Ecosystem Science
  • Research Area: Carbon Cycle, Nutrient Cycling

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)