BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Faster Organic Matter Decomposition Predicted for Well-Drained Boreal Soils Following Permafrost Degradation
Published: October 30, 2013
Posted: February 07, 2014

Roots and litterfall can release readily decomposable carbon sources into soil. This newly added carbon may increase or suppress the decomposition of older soil organic matter phenomena known as positive or negative “priming effects.” In temperate regions, recent research suggests priming effects can be a critical mechanism controlling soil carbon dynamics, yet virtually nothing is known about priming effects in boreal ecosystems. To investigate the importance of priming effects in boreal forest soils, researchers at Argonne National Laboratory developed a mechanistic model that can simulate simultaneously occurring soil physical, chemical, biological, and hydrological processes and their interactions. The model was then used to perform sensitivity analyses for two black spruce forest sites, with and without underlying permafrost. Overall, priming effects were strongly controlled by the intensity and frequency of dissolved organic carbon (DOC) inputs to soil. Greater priming effects were predicted for the site with favorable soil water flow than for the site where soil water flow was limited because water flow can carry DOC to deep soil layers, which are rich in organic carbon in boreal soils. Modeling results suggest that priming effects might be accelerated for sites where permafrost degradation leads to drier soil conditions and favorable water transport into deeper layers. In addition to DOC dynamics, priming effects were most sensitive to changes in the composition of solid soil organic carbon, followed by biomass changes in the soil microbial community. The findings from this model sensitivity analysis highlight the urgent need to better study these key parameters in future laboratory and field experiments in permafrost regions.

Reference: Fan, Z., J. D. Jastrow, C. Liang, R. Matamala, and R. M. Miller. 2013. “Priming Effects in Boreal Black Spruce Forest Soils: Quantitative Evaluation and Sensitivity Analysis,” PLoS ONE 8, e77880. DOI:10.1371/journal.pone.0077880. (Reference link)

Contact: Mike Kuperberg, SC-23.1, (301) 903-3281, Daniel Stover, SC-23.1, (301) 903-0289
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Terrestrial Ecosystem Science
  • Research Area: Carbon Cycle, Nutrient Cycling

Division: SC-33.1 Earth and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Jan 11, 2022
No Honor Among Copper Thieves
Findings provide a novel means to manipulate methanotrophs for a variety of environmental and in [more...]

Dec 06, 2021
New Genome Editing Tools Can Edit Within Microbial Communities
Two new technologies allow scientists to edit specific species and genes within complex laborato [more...]

Oct 27, 2021
Fungal Recyclers: Fungi Reuse Fire-Altered Organic Matter
Degrading pyrogenic (fire-affected) organic matter is an important ecosystem function of fungi i [more...]

Oct 19, 2021
Microbes Offer a Glimpse into the Future of Climate Change
Scientists identify key features in microbes that predict how warming affects carbon dioxide emi [more...]

Aug 25, 2021
Assessing the Production Cost and Carbon Footprint of a Promising Aviation Biofuel
Biomass-derived DMCO has the potential to serve as a low-carbon, high-performance jet fuel blend [more...]

List all highlights (possible long download time)