BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Sagebrush Carrying Out Hydraulic Lift Enhances Surface Soil Nitrogen Cycling and Nitrogen Uptake into Inflorescences
Published: November 04, 2013
Posted: February 07, 2014

Plant roots are conduits for water flow from soil to leaves and from wetter to drier soil. This hydraulic redistribution through root systems occurs in soils worldwide and can enhance stomatal opening, transpiration, and plant carbon gain. For decades, upward hydraulic lift (HL) of deep water through roots into dry, litter-rich, surface soil also has been hypothesized to enhance nutrient availability to plants by stimulating microbe controlled nutrient cycling, but this link has not been demonstrated in the field. Working in sagebrush-steppe, where water and nitrogen limit plant growth and reproduction and where HL occurs naturally during summer drought, Department of Energy scientists from the Marine Biological Laboratory slightly augmented deep soil water availability (HL+) to plants throughout the summer growing season. The treated sagebrush lifted greater amounts of water than control plants and had slightly less negative predawn and midday leaf water potentials. Soil respiration also was augmented under HL+ plants. At summer’s end, they observed increased rates of nitrogen cycling in surface soil layers around HL+ plants and increased nitrogen uptake into HL+ plants’ inflorescences as sagebrush set seed. These treatment effects persisted even though unexpected monsoon rainstorms arrived during assays and increased surface soil moisture around all plants. Simulation models from ecosystem to global scales have just begun to include effects of hydraulic redistribution on water and surface energy fluxes. Results from this field study indicate that plants carrying out HL also can substantially enhance decomposition and nitrogen cycling in surface soils.

Reference: Cardon, Z. G., J. M. Stark, P. M. Herron, and J. A. Rasmussen. 2013. “Sagebrush Carrying Out Hydraulic Lift Enhances Surface Soil Nitrogen Cycling and Nitrogen Uptake into Inflorescences,” Proceedings of the National Academy of Sciences (USA) 110, 18988-991. DOI:10.1073/pnas.1311314110. (Reference link)

Contact: Mike Kuperberg, SC-23.1, (301) 903-3281, Daniel Stover, SC-23.1, (301) 903-0289
Topic Areas:

  • Research Area: Terrestrial Ecosystem Science

Division: SC-33.1 Earth and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)