U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Root Microbial Populations May Enhance Tree Productivity
Published: October 16, 2013
Posted: February 04, 2014

Bacterial and fungal communities inhabiting the soil around a plant’s roots (the rhizosphere) as well as within the roots (the endosphere) can signifi­cantly benefit the plant’s overall health and productivity, especially in long-lived perennials such as trees. However, the molecular mechanisms that regulate these very complex interactions between plants and microbes are difficult to study and poorly understood. To gain insight into these interactions, researchers at Oak Ridge National Laboratory conducted a detailed study of the rhizosphere and endosphere “microbiomes” of the Eastern Cottonwood tree (Populus deltoides), a promising bioenergy feedstock candidate, from two natural settings in North Carolina and Tennessee and over two seasons. While much of the observed variation is still to be explained, the group did find significant differences in microbial communities between the two locations and between the fall and spring seasons. Additionally, they found that microbes within roots were very different from those just outside the roots, indicating that selection for specific, rather than random, microbes to colonize plant roots may occur. The results suggest that these beneficial microbes might be manipulated to enhance plant growth and productivity as well as increase resistance and adaptability to environmental stresses.

Reference: Shakya, M., N. Gottel, H. Castro, Z. K. Yang, L. Gunter, J. Labbé, W. Muchero, G. Bonito, R. Vilgalys, G. Tuskan, M. Podar, and C. W. Schadt. 2013 “A Multifactor Analysis of Fungal and Bacterial Community Structure in the Root Microbiome of Mature Populus deltoides Trees,” PLoS ONE 8(10), e76382. DOI:10.1371/journal.pone.0076382. (Reference link)

Contact: Cathy Ronning, SC-23.2, (301) 903-9549
Topic Areas:

  • Research Area: Microbes and Communities
  • Research Area: Plant Systems and Feedstocks, Plant-Microbe Interactions
  • Research Area: Sustainable Biofuels and Bioproducts

Division: SC-23.2 Biological Systems Science Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)