U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Accounting for Root-Driven Priming of Soil Organic Matter Decomposition Can Improve Model Performance
Published: August 19, 2013
Posted: February 04, 2014

The interactions between plants and soil play a central role in the functioning of terrestrial ecosystems and the global carbon cycle. Most of these interactions take place in the rhizosphere, the zone of soil that surrounds and is directly influenced by plant roots. The rhizosphere priming effect is a key interaction between living roots and associated rhizosphere organisms that has the potential to alter soil organic matter dynamics by stimulating or suppressing decomposition rates. In a review for New Phytologist, a series of modeling exercises explored how the rhizosphere priming effect might result from an evolutionarily stable mutualistic association between plants and rhizosphere microbes, and how the physiological responses of rhizosphere microbes to different types of plant-derived substrates might help to explain the existence of both positive and negative priming effects. Further, the ability of a commonly used ecosystem model to correctly simulate data from the U.S. Department of Energy-sponsored Duke Free-Air CO2 Enrichment (FACE) experiment was significantly improved by including a priming-induced acceleration of soil organic matter decomposition in response to atmospheric CO2 enrichment. A 40% increase over ambient decay rates for one of the model’s soil organic matter pools enabled better predictions of the increases in plant growth and nitrogen uptake as well as the lack of change in soil carbon observed in the elevated CO2 treatment. This model-data-comparison case study demonstrates the potential importance of the rhizosphere priming effect in terrestrial ecosystems and highlights the value of research efforts to enable its mechanistic incorporation into future ecosystem and Earth system models.

Reference: Cheng, W., W. J. Parton, M. A. Gonzalez-Meler, R. Phillips, S. Asao, G. G. McNickle, E. Brzostek, and J. D. Jastrow. 2013. “Synthesis and Modeling Perspectives of Rhizosphere Priming,” New Phytologist 201, 31-44. DOI: 10.1111/nph.12440. (Reference link)

Contact: Mike Kuperberg, SC-23.1, (301) 903-3281, Daniel Stover, SC-23.1, (301) 903-0289
Topic Areas:

  • Research Area: Terrestrial Ecosystem Science
  • Research Area: Carbon Cycle, Nutrient Cycling
  • Research Area: Free Air CO2 Enrichment (FACE)

Division: SC-23.2 Biological Systems Science Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)