BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Multiple Species of Bacteria Convert Elemental Mercury to Toxic Methylmercury
Published: August 04, 2013
Posted: October 23, 2013

Methylmercury is a known neurotoxin that poses a significant health risk to humans. A number of anaerobic bacterial species methylate oxidized mercury to methylmercury, but only one species has been shown to methylate elemental mercury. Because elemental mercury has been considered to be relatively inert and is volatile, remediation approaches have focused on converting toxic forms of mercury into elemental mercury that would then bubble out of surface water and dissipate. Now, scientists from Oak Ridge National Laboratory report that multiple species of bacteria can methylate elemental mercury. Moreover, some species can both oxidize and methylate elemental mercury, others require the presence of a specific amino acid to perform these conversions, and still others can only oxidize elemental mercury. These findings suggest that both methylating and non-methylating bacteria can enhance the formation of methylmercury in anaerobic environments. A more complete understanding of the variety of microbial processes involved in mercury cycling clarifies the challenges associated with cleaning up mercury-contaminated water and sediments.

Reference: Hu, H., H. Lin, W. Zheng, S. J. Tomanicek, A. Johs, X. Feng, D. A. Elias, L. Liang, and B. Gu. 2013. “Oxidation and Methylation of Dissolved Elemental Mercury by Anaerobic Bacteria,” Nature Geoscience 6, 751–54. DOI: 10.1038/NGEO1894. (Reference link)

Contact: Paul E. Bayer, SC-23.1, (301) 903-5324
Topic Areas:

  • Research Area: Subsurface Biogeochemical Research
  • Research Area: Microbes and Communities

Division: SC-33.1 Earth and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)