BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Evaluating the CO2 Component of Climate Models Using ARM Southern Great Plains Site Data
Published: July 01, 2013
Posted: September 12, 2013

Aircraft data collected over the Southern Great Plains (SGP) site were used to analyze changes in the three-dimensional (3D) distribution of atmospheric CO2 for several greenhouse gas concentration trajectories adopted by the Intergovernmental Panel on Climate Change for its fifth Assessment Report. Using the Community Earth System Model–Biogeochemistry (CESM1-BGC), scientists first compared CO2 concentrations simulated for 1850 to 2005 to surface, aircraft, and column observations. Second, the evolution of spatial and temporal gradients within the SGP’s 3D observational footprint during the twenty-first century was examined. By upscaling the results, the study showed that the mean annual cycle in atmospheric CO2 was underestimated for the historical period throughout the Northern Hemisphere, suggesting that the growing season net CO2 flux in the Community Land Model (the land component of CESM) was too weak. Over the last half century, the growth rate of atmospheric CO2 was higher in the model than in observations, suggesting that the overall sensitivity of land and ocean CO2 uptake to rising atmospheric CO2 (and other human global change perturbations) was too weak (i.e., model parameterization of the land and ocean to rising CO2 needs to be adjusted) . The diagnostics that were developed in this paper provide a means to test future generations of coupled carbon–climate models.

Reference: Keppel-Aleks, G., J. T. Randerson, K. Lindsay, B. B. Stephens, J. K. Moore, S. C. Doney, P. E. Thornton, N. M. Mahowald, F. M. Hoffman, C. Sweeney, P. P. Tans, P. O. Wennberg, and S. C. Wofsy. 2013. “Atmospheric Carbon Dioxide Variability in the Community Earth System Model: Evaluation and Transient Dynamics during the Twentieth and Twenty-First Centuries,” Journal of Climate 26, 4447–75. DOI: 10.1175/JCLI-D-12-00589.1. (Reference link)

Contact: Wanda Ferrell, SC-23.1, (301) 903-0043, Rickey Petty, SC-23.1, (301) 903-5548, Daniel Stover, SC-23.1, (301) 903-0289
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Atmospheric System Research
  • Research Area: Carbon Cycle, Nutrient Cycling
  • Facility: DOE ARM User Facility

Division: SC-33.1 Earth and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Jan 11, 2022
No Honor Among Copper Thieves
Findings provide a novel means to manipulate methanotrophs for a variety of environmental and in [more...]

Dec 06, 2021
New Genome Editing Tools Can Edit Within Microbial Communities
Two new technologies allow scientists to edit specific species and genes within complex laborato [more...]

Oct 27, 2021
Fungal Recyclers: Fungi Reuse Fire-Altered Organic Matter
Degrading pyrogenic (fire-affected) organic matter is an important ecosystem function of fungi i [more...]

Oct 19, 2021
Microbes Offer a Glimpse into the Future of Climate Change
Scientists identify key features in microbes that predict how warming affects carbon dioxide emi [more...]

Aug 25, 2021
Assessing the Production Cost and Carbon Footprint of a Promising Aviation Biofuel
Biomass-derived DMCO has the potential to serve as a low-carbon, high-performance jet fuel blend [more...]

List all highlights (possible long download time)