U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Long-Term Global Water Projections Under Climate Change
Published: June 28, 2013
Posted: July 18, 2013

Global freshwater use has grown over the past century from an estimated annual 580 km3 in 1900 to 3829 km3 in 2000, and continued growth is expected in the 21st century. U.S. Department of Energy scientists at Pacific Northwest National Laboratory, in collaboration with a multi-institutional team, used the Global Change Assessment Model (GCAM) to assess future water demands representing six socioeconomic scenarios. The modeling framework explicitly tracks future water demands for the agricultural (irrigation and livestock), energy (electricity generation, primary energy production and processing), industrial (manufacturing and mining), and municipal sectors. The energy, industrial, and municipal sectors are represented in 14 geopolitical regions, with the agricultural sector further disaggregated into as many as 18 agro-ecological zones within each region. The scenarios showed increases in global water withdrawals from 3710 km3 year−1 in 2005 to 6195–8690 km3 year−1 and to 4869–12,693 km3 year−1 in 2050 and 2095, respectively. Comparing the projected total regional water withdrawals to the historical supply of renewable freshwater, the Middle East exhibits the highest levels of water scarcity throughout the century, followed by India. Water scarcity increases over time in both of these regions. In contrast, water scarcity improves in some regions with large base-year electric sector withdrawals, such as the United States and Canada, due to capital stock turnover and the almost complete phaseout of once-through flow cooling systems. The team concludes that: 1) fresh water availability may be insufficient to meet all future water demands in some regions such as the Middle East and India; and 2) many regions can be expected to increase reliance on nonrenewable groundwater, water reuse, and desalinated water, but they also highlight an important role for development and deployment of water conservation technologies and practices.

Reference: Hejazi, M., J. Edmonds, L. Clarke, P. Kyle, E. Davies, V. Chaturvedi, M. Wise, P. Patel, J. Eom, K. Calvin, R. Moss, and S. Kim. 2013. “Long-Term Global Water Projections Using Six Socioeconomic Scenarios in an Integrated Assessment Modeling Framework,” Technological Forecasting and Social Change, DOI: 10.1016/j.techfore.2013.05.006. (Reference link)

Contact: Bob Vallario, SC 23.1, (301) 903-5758
Topic Areas:

  • Research Area: Multisector Dynamics (formerly Integrated Assessment)

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)