BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Engineering Thermophilic Bacteria for Efficient Fermentation of Plant Biomass
Published: June 03, 2013
Posted: July 18, 2013

Higher temperatures make plant biomass more accessible for processing, so thermophilic bacteria, which are active at higher temperatures than other bacteria, are promising candidates for biofuel production systems. To take full advantage of their potential in consolidated bioprocessing, efficient genetic tools are needed to metabolically engineer the thermophile. Researchers at the U.S. Department of Energy’s BioEnergy Science Center have been developing a series of genetic tools to manipulate Caldicellulosiruptor bescii. C. bescii is one of the most promising thermophiles for deconstructing and fermenting lignocellulose from nonfood plants. New research demonstrates a gene replacement strategy used to delete the lactate dehydrogenase gene from C. bescii. Because the plasmid contains a gene for which there is both positive and negative selection, it is possible to select first for recombination of the deleted ldh gene and then for loss of the plasmid sequences. This method allows clean genetic insertions and deletions, leaving no residual genetic material so that the method can be used repeatedly for adding and subtracting genes for metabolic engineering. The C. bescii strain containing the ldh gene deletion exhibited the expected metabolism changes, namely the engineered strain no longer produced lactate and had increased acetate and H2 production. This gene replacement demonstration paves the way for further genetic manipulation of C. bescii to produce desired biofuel fermentation products directly from plant biomass.

Reference: Cha, M., D. Chung, J. G. Elkins, A. M. Guss, and J. Westpheling. 2013. “Metabolic Engineering of Caldicellulosiruptor bescii Yields Increased Hydrogen Production from Lignocellulosic Biomass,” Biotechnology for Biofuels 6, 85. DOI: 10.1186/1754-6834-6-85. (Reference link)

Contact: Kent Peters, SC-23.2, (301) 903-5549
Topic Areas:

  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Microbes and Communities
  • Research Area: Plant Systems and Feedstocks, Plant-Microbe Interactions
  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: DOE Bioenergy Research Centers (BRC)
  • Research Area: Biosystems Design

Division: SC-33.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)