BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Latitudinal Patterns Unveiled in Elemental Ratios of Marine Plankton
Published: March 17, 2013
Posted: June 20, 2013

Nearly 75 years ago, Alfred C. Redfield observed a similarity between the elemental composition of marine plankton in the surface ocean and dissolved nutrients in the ocean interior. This stoichiometry among carbon (C), nitrogen (N), and phosphorus (P) continues to be a central tenet in ocean biogeochemistry and is used to infer a variety of ecosystem processes, such as phytoplankton productivity and rates of nitrogen fixation and loss. Over the years, however, model, field, and laboratory studies have shown that different mechanisms can explain both constant and variable ratios of C to N and P among ocean plankton communities. The range of C/N/P ratios in the ocean and their predictability are the subject of much active research. In a recent study, partially funded by the U.S. Department of Energy’s Office of Biological and Environmental Research, global patterns in the elemental composition of phytoplankton and particulate organic matter in the upper ocean were assessed using published and unpublished observations of particulate P, N, and C from a broad latitudinal range, supplemented with elemental data for surface plankton populations. The authors showed that the elemental ratios of marine organic matter exhibit large spatial variations, with a global average that differs substantially from the canonical Redfield value. Moreover, elemental ratios exhibit a clear latitudinal trend. Specifically, a ratio of 195:28:1 is observed in the warm, nutrient-depleted low-latitude gyres; a ratio of 137:18:1 in warm, nutrient-rich upwelling zones; and a ratio of 78:13:1 in cold, nutrient-rich high-latitude regions. Thus, it appears that the coupling between oceanic C, N, and P cycles may vary systematically by ecosystem, which, in turn, is reflected in these observed latitudinal tendencies.

Reference: Martiny, A. C., C. T. A. Pham, F. W. Primeau, J. A. Vrugt, J. K. Moore, S. A. Levin, and M. W. Lomas. 2013. “Strong Latitudinal Patterns in the Elemental Ratios of Marine Plankton and Organic Matter,” Nature Geoscience 6, 279–83. DOI: 10.1038/ngeo1757. (Reference link)

Contact: Dorothy Koch, SC-23.1, (301) 903-0105
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Carbon Cycle, Nutrient Cycling

Division: SC-33.1 Earth and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)