U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Aerosol Radiative Forcing Uncertainties Affected by Climate Model
Published: March 20, 2013
Posted: June 20, 2013

Atmospheric aerosols are emitted by fossil fuel combustion and other human activities and affect climate by scattering (cooling) or absorbing (warming) incoming solar radiation. The effect depends on the particles’ chemical composition. However, the estimate of how much aerosols warm or cool climate is uncertain, as various models have calculated a wide range of forcings. These forcing uncertainties come from differing aerosol simulation algorithms that have differing aerosol-climate interactions (such as aerosol transport and rainout) and different background climate properties such as surface brightness. A recent study by a group of climate scientists, including U.S. Department of Energy-funded researchers at Pacific Northwest National Laboratory, found a way to isolate the uncertainty due to the aerosol calculations from the influence of the models’ different background climates. The team used 12 different climate models and prescribed the same aerosol fields for each model. They found that a surprisingly large diversity in aerosol forcing comes from the host climate models’ differences in model-simulated clouds and surface properties, which could explain about half the overall sulfate aerosol forcing diversity in the forcing estimate. The study demonstrates the importance of considering the aerosol climate context when working to reduce uncertainty in forcing estimates.

Reference: Stier, P., N. A. J. Schutgens, H. Bian, O. Boucher, M. Chin, S. Ghan, N. Huneeus, S. Kinne, G. Lin , G. Myhre, J. E. Penner, C. Randles, B. Samset, M. Schulz, H. Yu, and C. Zhou. 2013. “Host Model Uncertainties in Aerosol Radiative Forcing Estimates: Results from the AeroCom Prescribed Intercomparison Study,” Atmospheric Chemistry and Physics 13, 3245–70. DOI: 10.5194/acp-13-3245-2013. (Reference link)

Contact: Renu Joseph, SC-23.1, (301) 903-9237, Dorothy Koch, SC-23.1, (301) 903-0105
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Atmospheric System Research

Division: SC-23.1 Climate and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)