U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Capturing the Complexity of Sea Ice and Salt-Water Interactions in Large-Scale Models
Published: May 07, 2013
Posted: June 20, 2013

Recent years have seen rapid changes in the Arctic, including a rapid decline of summer sea ice. It is crucial for models to be able to capture these changes, including seasonal growth and melting of sea ice. These processes include complex interactions between sea ice and salty ocean water and ocean biogeochemistry. When sea ice first freezes, it incorporates salty ocean water into microscopic brine inclusions. Over time, this brine drains out in a process known as gravity drainage, resulting in a desalination of the sea ice. This drainage, in turn, sets up a circulating flow of brine with the ocean that provides an important nutrient source for organisms living in the brine inclusions. U.S. Department of Energy-funded researchers at Los Alamos National Laboratory (LANL) have developed a new thermodynamic module for the LANL sea-ice model, CICE, which simultaneously determines both the time varying temperature and sea-ice salinity. This new module improves on the previous version of CICE, which had a fixed salinity profile. Observational data from both tank experiments and fieldwork are used to guide and test the development of a simple gravity drainage scheme suitable for inclusion in a global climate model. The researchers have found that gravity drainage consists of two modes: rapid desalination near the base of the ice, and slower desalination throughout the ice. The model results compare well with both the experimental and fieldwork data.

Reference: Turner, A. K., E. C. Hunke, and C. M. Bitz. 2013. “Two Modes of Sea-Ice Gravity Drainage: A Parameterization for Large-Scale Modeling,” Journal of Geophysical Research Oceans, doi:10.1002/jgrc.20171. (Reference link)

Contact: Dorothy Koch, SC-23.1, (301) 903-0105
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling

Division: SC-23.1 Climate and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)