BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Impact of Local Climate on Cloud Systems
Published: February 01, 2013
Posted: June 20, 2013

Researchers took advantage of cloud system observations in two very different environments to study factors that influence tropical convective cloud system development. The Atmospheric Radiation Measurement (ARM) program conducted field studies in two different tropical locations—Darwin, Australia, and Niamey, Niger. Darwin is a tropical coastal site, while Niamey is an arid site fairly close to the Sahara desert. The researchers used radiosonde observations from ARM and other international agencies to initialize high-resolution model simulations and compared the resulting cloud fields to radar and satellite observations to determine whether the model was correctly capturing the cloud properties. The model was able to reproduce characteristics of the observed mesoscale convective systems (MCSs) in both locations. The African cloud systems had a scale of nearly 400 km, while the Australian systems were much smaller (approximately 100 km). Once satisfied with the model simulation quality, the researchers performed sensitivity studies to understand what environmental aspects led to cloud system variations at the two locations. The model experiments found that the Australian cloud systems had stronger convective updrafts, while the African clouds had stronger mesoscale ascent outside of the convective areas. Differences in vertical wind shear and larger amounts of dust aerosol at Niamey also contributed to the variations found in the two regions. The high-resolution model simulations enabled quantitative descriptions of water transport between the convective, stratiform, and anvil regions of the cloud systems and quantification of water sources and sinks from microphysical processes, providing information that can be used to help determine parameters in cloud parameterizations used in general circulation models (GCMs).

Reference: Zeng, X., W.-K. Tao, S. W. Powell, R. A. Houze, P. Ciesielski, N. Guy, H. Pierce, and T. Matsui. 2013. "A Comparison of the Water Budgets Between Clouds from AMMA and TWP-ICE," Journal of the Atmospheric Sciences 70(2), 487–503. DOI: 10.1175/JAS-D-12-050.1. (Reference link)

Contact: Wanda Ferrell, SC-23.1, (301) 903-0043, Sally McFarlane, SC-23.1, (301) 903-0943, Ashley Williamson, SC-23.1, (301) 903-3120
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Atmospheric System Research
  • Facility: DOE ARM User Facility

Division: SC-33.1 Earth and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Jan 11, 2022
No Honor Among Copper Thieves
Findings provide a novel means to manipulate methanotrophs for a variety of environmental and in [more...]

Dec 06, 2021
New Genome Editing Tools Can Edit Within Microbial Communities
Two new technologies allow scientists to edit specific species and genes within complex laborato [more...]

Oct 27, 2021
Fungal Recyclers: Fungi Reuse Fire-Altered Organic Matter
Degrading pyrogenic (fire-affected) organic matter is an important ecosystem function of fungi i [more...]

Oct 19, 2021
Microbes Offer a Glimpse into the Future of Climate Change
Scientists identify key features in microbes that predict how warming affects carbon dioxide emi [more...]

Aug 25, 2021
Assessing the Production Cost and Carbon Footprint of a Promising Aviation Biofuel
Biomass-derived DMCO has the potential to serve as a low-carbon, high-performance jet fuel blend [more...]

List all highlights (possible long download time)