U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Impurities in Natural Minerals Can Affect Uranium Mobility
Published: March 25, 2013
Posted: June 20, 2013

Uranium groundwater contamination resulted from mining for use as an energy source, as well as from past enrichment and weapons production activities at U.S. Department of Energy (DOE) sites. Understanding the impact of uranium contamination on water sources and developing appropriate remediation strategies are needed both to protect public safety and to continue the use of uranium in a balanced energy portfolio. Ground­water travels underground through a complex mixture of soils and sediments. A magnetic iron oxide mineral, magnetite, is commonly found in these sediments. Magnetite can significantly slow uranium migration, acting like a “rechargeable battery” for continued uranium removal from groundwater. It performs this task by sequestering the uranium as nanoparticles of uranium dioxide within underground sediments. Researchers at Argonne National Laboratory (ANL) and Pacific Northwest National Laboratory now have found that titanium, a common impurity in these natural magnetic iron minerals, obstructs the formation of the uraninite nanoparticles, resulting in the formation of novel molecular-sized uranium-titanium structures. This previously unknown association of uranium with titanium affects uranium’s mobility in subsurface groundwater. Incorporating this knowledge into ongoing modeling efforts will improve scientists’ ability to predict future migration of subsurface contaminant plumes and provide detailed information needed for long-term stewardship of DOE legacy sites. The researchers used ANL’s Advanced Photon Source to study how uranium interacts with magnetite within the complex subsurface chemical environment.

Reference: Latta, D. E., C. I. Pearce, K. M. Rosso , K. M. Kemner, and M. I. Boyanov. 2013. “Reaction of UVI with Titanium-Substituted Magnetite: Influence of Ti on UIV Speciation,” Environmental Science and Technology 47(9), 421–30. DOI: 10.1021/es303383n. (Reference link)

Contact: Roland F. Hirsch, SC-23.2, (301) 903-9009
Topic Areas:

  • Research Area: Subsurface Biogeochemical Research
  • Research Area: Structural Biology Infrastructure

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)