U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Analyzing the Complexity of Interactions with Mineral Surfaces
Published: April 03, 2013
Posted: May 17, 2013

Minerals have a profound effect on the fate and transport of contaminants in subsurface environments. Surface complexation modeling (SCM) enables predictions of adsorption over a broader range of conditions than can be accommodated by adsorption isotherm equations or ion exchange models. A newly published review article discusses the current status of SCM and its applications to a range of systems. The main focus is on multidentate surface complexes, formed when an ion or molecule in solution binds to two or more adjacent active sites on the surface. Spectroscopic measurements often provide evidence for the presence of multidentate surface complexes, but there has been ambiguity and confusion in the literature regarding the best ways to incorporate such complexes into SCM. The article describes and evaluates several approaches to modeling these interactions and discusses examples of model applications, as well as the need for improvements in textbooks, computer programs, and the clarity of future publications to bridge the gap between theory and practice in SCM. This section is illustrated by a modeling discussion of surface complexation of uranium (VI) on the mineral goethite, a system that is a research focus of the Department of Energy's Office of Biological and Environmental Research (BER). Many of the experimental results referenced in this review were obtained in BER research projects. The article concludes with advice for SCM users.

Reference: Wang, Z., and D. E. Giammar. 2013. "Mass Action Expressions for Bidentate Adsorption in Surface Complexation Modeling: Theory and Practice," Environmental Science and Technology 47(9), 3982–96. DOI: 10.1021/es305180e. (Reference link)

Contact: Roland F. Hirsch, SC-23.2, (301) 903-9009
Topic Areas:

  • Research Area: Subsurface Biogeochemical Research

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)