U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Plutonium Sorption over 10 Orders of Magnitude
Published: April 24, 2013
Posted: May 17, 2013

Plutonium (Pu) adsorption to and desorption from mineral surfaces plays a major role in controlling its mobility in the environment. However, laboratory measurements of Pu sorption are typically conducted at much higher concentrations (10-6 to 10-10 M) than found in subsurface water (< 10-12 M). As a result, there is a concern that Pu behavior determined in lab measurements might not be representative of sorption occurring under actual subsurface conditions. A new study carried out at Lawrence Livermore National Laboratory (LLNL) overcomes this obstacle. It provides measurements of the sorption of dissolved Pu (V) onto surfaces of a common clay mineral (Na-montmorillonite) over an unprecedentedly large range of initial plutonium solution concentrations (10-6 to 10-16 M). Concentration measurements at the low end of this range were made possible by the unique capabilities of the Center for Accelerator Mass Spectrometry at LLNL. The team's results indicate that the plutonium adsorption behavior on montmorillonite was linear over the range of concentrations studied, indicating that plutonium sorption behavior from laboratory studies at higher concentrations can be extrapolated to sorption behavior at low, environmentally relevant concentrations.

Reference: Begg, J., M. Zavarin, P. Zhao, S. Tumey, B. A. Powell, and A. B. Kersting. 2013. "Pu(V) and Pu(IV) Sorption to Montmorillonite," Environmental Science and Technology, DOI: 10.1021/es305257s. (Reference link)

Contact: Roland F. Hirsch, SC-23.2, (301) 903-9009
Topic Areas:

  • Research Area: Subsurface Biogeochemical Research

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)